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Exact explicit analytical expression for echoes in the Carr–Purcell–Meiboom–Gill sequence with arbitrary
excitation and refocusing angles and resonance offset of RF pulses was obtained, employing the generat-
ing functions formalism developed earlier by authors. Asymptotic form and analytical approximation for
echoes were derived in an elegant way and analyzed in details. In particular, it was shown that depending
on T1, T2 and parameters of the pulse sequence, oscillatory behavior of echoes can take place. Accuracy of
asymptotic forms and approximations were tested by comparison with exactly calculated echo ampli-
tudes. Besides, it was shown, that the generating function approach can be applied to the consideration
of terminated pulse sequences, when after-pulses echoes are registered.
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1. Introduction

Magnetic Resonance Imaging (MRI) is widely used in medical
and biological research. At the same time the method shows prom-
ise for studying chemical reactions in situ [1], fluxes, mass transfer
process [2], material structure and properties [1–3]. Long trains of
periodic RF pulses make an integral part of NMR and MRI methods.

Echo pulse sequences conventionally used in MR imaging con-
tain p and p/2 resonant RF pulses that are primarily chosen for
the simpler data analysis. For instance, the classic Carr–Purcell–
Meiboom–Gill (CPMG) pulse sequence

ðp=2Þ�y � TE=2� px � TE� px � TE� px � � � � ð1Þ

(TE is echo time (inter-pulse period), subscripts ‘‘�y’’ and ‘‘x’’ denote
the pulse phase) consists of p/2 excitation pulse and p refocusing
pulses. However, it is known that any refocusing pulse can produce
spin echoes [4,5]. Moreover, using smaller flip angle of the RF pulse
appears to be an actual problem in MRI since it can permit one to
decrease full scanning time [6], does not demand preliminary
time-consuming calibration of the RF probe, and permits one to de-
crease the RF load. Understanding echoes in any flip angle regime is
also actual for NMR logging [7].

The response of the CPMG sequence has been heavily studied
[4,5,8–11]. Some of these approaches involve the eigenvalues anal-
ysis of the operators of evolution of the magnetization vector
[9,10], others rest on direct calculation of the magnetization by
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the recursion [8,11] or consider the asymptotic regime only [10].
Most of these approaches uses numerical methods, and they lack
a closed form expression for echo signal. However, possession of
an analytical expression is an important point, since it allows one
to get a deeper insight into the nature of the signal formation. Nev-
ertheless, a direct laborious derivation of an analytical form of echo
from the Bloch equations has not been performed so far.

To this end, earlier we proposed and developed a new general
approach for analysis of spin system response to a periodic pulse
train with arbitrary excitation and refocusing flip angle and reso-
nance offset [12,13]. This approach is based on the generation
functions (GF) formalism, which is very known in mathematics
[14], and allowed us to obtain analytical results in an elegant
way. The essence of the formalism is as follows. If one has a num-
ber series (infinite in a general case) M1, M2 . . . , Mn, . . ., then the
corresponding GF is the following function of a complex variable z:

f ðzÞ ¼ M0 þM1zþ � � � þMnzn þ � � � ¼
X1
n¼0

Mnzn; ð2Þ

where jzj < 1, which usually ensures the convergence of the series.
Thus, the GF comprises complete information about all values Mn at
once. The advantage of the GF approach is that the GF often has a sim-
ple analytical form, whereas the explicit expression for Mn cannot be
obtained analytically or is very cumbersome. For instance, the form of
the generating function for Legendre polynomials

f ðzÞ ¼
X1
k¼0

PkðxÞzk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2xzþ z2
p ð3Þ

is much simpler than that for the polynomials.

http://dx.doi.org/10.1016/j.jmr.2011.07.013
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Taking z = ei# (0 6 # < 2p) or z = e�s (s > 0), one can see that GF is
actually a discrete Fourier or Laplace transform of the Mn series.
Therefore, Mn can be calculated easily using conventional Fourier
transformation of the GF. One can consider echo amplitudes in
the CPMG pulse sequence as the values Mn (hereafter by the term
‘‘echo amplitude’’ we mean the net complex magnetization
M+ = Mx + iMy at the moment of the echo). GFs for echoes induced
by various periodic pulse sequences can then be tabulated as it is
done for Fourier or Laplace transformations of various functions.

In Refs. [12,13] we obtained analytically the GFs for echo ampli-
tudes in the CPMG sequence with resonant and nonresonant RF
pulses with arbitrary refocusing angle, respectively. The asymp-
totic form for echo amplitudes in case of equal spin relaxation
times T1 = T2 was also found [12,13].

The study of the asymptotic behaviour from our point of view is
important to better understand the general properties of the CPMG
sequence, and besides, the asymptotic form allows one to easily
obtain the information about T1 and T2 relaxation times using
experimental echoes with large numbers. Other reasons come from
NMR logging where due to the wide distributions of static and RF
magnetic fields, the asymptotic behavior is quickly reached [10].
However, it turns out that for some relation between relaxation
times and refocusing angle a echo asymptotic form shows good
agreement with the exact one only for very large numbers of ech-
oes. Thus, an actual task arises to obtain analytical approximations
which are relatively simple and work well for transient echoes.

In the present work we employ the GF, obtained earlier, to de-
rive explicit expressions for the echo amplitudes, their asymptotic
behavior and analytical approximations for them for arbitrary T1

and T2.
In what follows, the diffusion effects are neglected, the RF pulse

effect is treated as instantaneous rotation of the magnetization
vector, spin relaxation during the pulse is neglected.

The paper is organized as follows. In Section 2, we consider the
GF for a definite isochromat in the CPMG sequence and apply the
configuration approach to it. In Section 3 MRI CPMG pulse se-
quence is considered, when a linear magnetic field gradient is
switched on between the pulses only. It is shown, that in this case
averaging over inhomogeneous broadening, induced by the gradi-
ent, can be easily performed immediately in the GF. Some com-
ments on terminated MRI pulse sequences are also made.
Applicability of the GF approach to NMR logging is discussed in
Section 4. In Section 5 exact expression for MRI CPMG echoes are
derived. It is shown, that the echo amplitudes can be expressed
in terms of the well-known Legendre polynomials. In Section 6
the asymptotic behavior of echoes is determined. It is shown, that
four cases for the asymptotic regime can be distinguished. In Sec-
tion 7 analytical approximations for echo amplitudes are pre-
sented. In particular, it is shown that depending on T1, T2 and
parameters of the pulse sequence, oscillatory behavior of echoes
can take place. Analysis of accuracy of the asymptotic form and
analytical approximation is performed in Section 8.
2. Generating function for a definite isochromat in the CPMG
sequence. The Configuration approach

Let us consider the CPMG pulse sequence with arbitrary refo-
cusing angle a. The pulses are allowed to be off resonance, and
Dx is the resonance offset for a given voxel. The corresponding
GF for the magnetization of a definite isochromat is defined by
Eq. (6) of Ref. [13]. If Mþ

0 ¼ Mx0 þ iMy0 ¼ Meqmþ0 , M�
0 ¼ Mx0�

iMy0 ¼ Meqm�0 and Mz0 = mz0Meq are the magnetization components
just after the excitation pulse, and Meq is the equilibrium magneti-
zation, then the GF for the transverse magnetization M+ = Mx + iMy

of a certain isochromat has the following form:
f ðzÞ
Meq
¼ D0mþ0 þ Q 1U þ Q 2U2 þ Q3U3

D0 þ D1U2 þ D2U4 ; ð4Þ

where

Q1 ¼ zn2
k�

k
Q 3 ¼ 2z2n3=2

2 lk�
1� zn1

1� z
� n1=2

1 ð1�mz0Þ
� �

; ð5Þ

Q2 ¼ ½1� zn1ðjkj2 � l2Þ�mþ0 þ zn2l2ð1þ zn1Þm�0 ; ð6Þ

D0 ¼
k�

k

� �2

D2 ¼ zn2k
�2ð1� zn1Þ; ð7Þ

D1 ¼ 1� z3n1n
2
2 � z n1 � zn2

2

� �
ðjkj2 � l2Þ; ð8Þ

k ¼ sin u sin
a
2
þ i cos

a
2
; ð9Þ

l ¼ cos u sin
a
2
; ð10Þ

U ¼ e�iw; ð11Þ

and star denotes complex conjugation. Here

a ¼ x1s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðDx=x1Þ2

q
; ð12Þ

u ¼ arctanðDx=x1Þ; ð13Þ

x1 = cB1, B1 is RF field amplitude, s is the refocusing pulse duration,
i.e., x1s is the nominal refocusing angle; c is the nucleus gyromag-
netic ratio, n1,2 = exp{�TE/T1,2}, T1 and T2 are spin–lattice and
spin–spin relaxation times, respectively, TE is echo time (inter-pulse
period), and w is the phase accumulated during one half of the
inter-pulse period for a definite isochromat.

As was mentioned in Ref. [13], the magnetization of a certain
isochromat can be represented in the following form:

Mþ
n ðx1;Dx;UÞ ¼

X2n

k¼�2n

Knkðx1;DxÞUk; ð14Þ

Kn�2n = Kn�2n+1 = 0 for n – 0, that is actually a decomposition of the
magnetization into the so-called configurations [5]. Therefore,
the GF (4) for a definite isochromat can also be decomposed into
the configurations:

f ðzÞ � f ðz;x1;Dx;UÞ ¼
X1
n¼0

Mþ
n ðx1;Dx;UÞzn

¼
Xþ1

k¼�1
Fkðz;x1;DxÞUk; ð15Þ

where the kth configuration

Fkðz;x1;DxÞ ¼
X1

nPjkj=2

Knkðx1;DxÞzn ð16Þ

depends on the pulse parameters only, while fast oscillating factor
Uk is determined by the resonance offset between pulses, which
can be different from that during the pulse (for instance, because
of application of a magnetic field gradient).

Exact explicit analytical expression for Mþ
n ðx1; Dx; UÞ of a def-

inite isochromat can be obtained from Eq. (4), but the final expres-
sion is a multiple sum, which is very cumbersome, and will not be
presented here.

3. Generating function for CPMG echo amplitudes in MRI

In MRI pulse sequences a linear magnetic field gradient ~G is
switched on between the pulses only, therefore,

w ¼ wMRIð~rÞ ¼ ðDxþ c~G;~rÞ TE
2
; ð17Þ

and if the range of wMRI is wide enough, averaging over inhomoge-
neous broadening (isochromats) induced by the magnetic field



332 M.V. Petrova et al. / Journal of Magnetic Resonance 212 (2011) 330–343
gradient, is reduced to the consideration of the null-configuration
F0(z, x1, Dx) in Eq. (15) only, that tremendously simplifies the GF form.

For the MRI CPMG pulse sequence with arbitrary refocusing an-
gle a, and the excitation pulse angle is not necessarily equal to p/2,
the null-configuration F0(z, x1, Dx), which is actually the GF for
CPMG echo amplitudes Mþ

n in MRI, was determined in Ref. [13]:

F0ðzÞ ¼
X1
n¼0

Mþ
n zn ¼ Mx0

2
1þ

ffiffiffiffi
X
Y

r" #
þ i

My0

2
1þ

ffiffiffiffi
Y
X

r" #
;

X ¼ ð1þ zn2Þ½1� zðn1 þ n2Þðcos a cos2 uþ sin2 uÞ þ z2n1n2�; ð18Þ
Y ¼ ð1� zn2Þ½1� zðn1 � n2Þðcos a cos2 uþ sin2 uÞ � z2n1n2�;

where all notations are defined in the previous section. Quantities
Mx0 and My0 are the x and y components of the initial magnetization
vector ~M0 just after the excitation pulse, respectively:

Mx0 ¼ Meq cos u sin x1s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dx=x1ð Þ2

q� �
;

My0 ¼ �Meq sin 2u sin2 x1s1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dx=x1ð Þ2

q� �
; ð19Þ

where s1 is the excitation pulse duration, and x1s1 is the nominal
excitation angle. The parameters of the excitation pulse are only
manifested in this initial condition for the transverse magnetization.
Therefore, actually the GF (18) describes both the CPMG and CP
(Carr–Purcell) pulse sequences, as well as the sequences with arbi-
trary phase of the excitation pulse (one should choose the appropri-
ate initial condition). Moreover, as was shown in Ref. [13], Eq. (18)
can be extended to the echo-sequence with phase cycling of the refo-
cusing pulses (i.e., when the phase of the nth refocusing pulse is
(n � 1)/), if values Mþ

n in Eq. (18) are regarded now as eiðn�1=2Þ/Mþ
n ,

where Mþ
n is the net transverse magnetization as before. For example,

at / = p, i.e., when the x and �x phases of the refocusing pulses are
alternated, the CPMG sequence turns in fact to the CP one and vice
versa, that corresponds to the results presented in Ref. [15].

It follows from the form of the GF (18), that nonresonant case
(Dx – 0) can be reduced to the resonant one (Dx = 0) with rede-
fined refocusing angle ae:

cos ae ¼ cos a cos2 uþ sin2 u; ð20Þ

i.e., one can consider the sequence consisting of nonresonant pulses
as the resonant pulse train with refocusing angle ae. This interesting
result was first obtained in Ref. [16] and naturally follows from the
GF form [13]. Thereby, henceforth, when considering infinite pulse
sequences, i.e., when the refocusing pulse precedes the echo signal,
we will address only to resonant RF pulse case.
3.1. After-pulses echoes

The original GF (4) for a definite isochromat comprises a com-
plete information about all configurations and their contributions
to echoes at once. Hence, it permits one to solve even a more gen-
eral problem, when the pulse sequence is terminated after the mth
refocusing pulse, and the after-pulses echoes Mþ

nm are registered at
the time points t ¼ mþ n

2

� �
� TE, provided that the same periodic

scheme for magnetic field gradient is continued:

F�nðz;x1;DxÞ � F�nðzÞ ¼ n�n=2
2

X1
m¼0

Mþ
nmzm; ð21Þ

i.e., the nonnull-configurations of the GF (4) are actually the GFs for
after-pulses echo amplitudes, i.e. for magnetization averaged over
isochromats at the moment of the echo. The expression for F�n(z)
can be obtained by integration of f(z, U)Un�1 over variable U along
the unity circle contour in the complex plane. The final expressions
for F�n(z), n = 0, ±1, . . . , are as follows:
F�2kðzÞ ¼ ½U1ðzÞ�k F0ðzÞ � ð1� dk0ÞMþ
0

	 

; ð22Þ

and

F�2kþ1ðzÞ ¼ zn1=2
2

l
k�
½U1ðzÞ�k

1
1� z

� n1=2
1

1�mz0

1� zn1

� �
2dk0 � 1½

þ
ð1� z2n2

2

�
ðjkj2 � l2 � zn1Þffiffiffiffiffiffiffi

XY
p

#
; ð23Þ

where

U1ðzÞ ¼ �
D1

2D2
þ

ffiffiffiffiffiffiffi
XY
p

2D2
; ð24Þ

and F0(z), X and Y are defined in Eq. (18); note, that X, Y, D1 and D2

are also functions of z.

4. Generating function for CPMG echo amplitudes in NMR
logging

In NMR logging, in contrast to MRI pulse sequences, a certain
isochromat has the same resonance offset Dx ¼ Dxð~rÞ during both
the pulse and the inter-pulse period, and phase incursion for a half
of the inter-pulse period for a definite isochromat is now

w ¼ wLoggingð~rÞ ¼ Dxð~rÞ TE
2
: ð25Þ

Thus, Dx is the same for both Fk(z, x1, Dx) and Uk in Eq. (15), and
averaging over different isochromats cannot be directly performed
by simple exclusion of the terms with k – 0 (the nonnull-configura-
tions), but the complete GF (4) should be weighted with the x1 and
Dx distribution s(x1, Dx) and integrated:

FechoðzÞ ¼
Z Z

f z;x1;Dx; e�iTE
2 Dx

� �
sðx1;DxÞdx1 dDx ð26Þ

(index ‘‘echo’’ denotes the GF for the net echo signal). Nevertheless,
we suppose even in this case the GF (4) for a definite isochromat
strongly simplifies the computation process, since averaging over
Dx and x1 can be performed in the GF at once.

Moreover, the coefficients Fk(z, x1, Dx) in Eq. (15) are some

functions of Dx/x1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðDx=x1Þ2

q
and depend weakly on

the offset Dx compared to fast oscillating factor e�ikDxTE/2. There-
fore, even in this case the nonull-configuration contributions in Eq.
(26) can be omitted to a high accuracy, if the width C of Dx-dis-
tribution is wide enough:
1

4p
C� TE� 1: ð27Þ

Then, in Eq. (26) one can use the function (18) instead of
f z;x1;Dx; e�iTE

2 Dx
� �

, that was verified numerically for homogeneous
(rectangular) and gaussian Dx-distributions.

For the same reason for the terminated pulse sequences only
the corresponding configuration F�n(z) can be considered.

5. Exact expression for MRI CPMG echo amplitudes

In what follows, we consider infinite MRI CPMG pulse sequences, i.e.,
the refocusing pulse precedes the echo signal. The corresponding GF for
echo amplitudes is determined by Eq. (18), and from now on, the index
‘‘0’’ will be omitted. Since echo amplitudes Mþ

n ¼ Mxn þ iMyn are the
coefficients preceding zn in power expansion of GF

FðzÞ ¼
X1
n¼0

Mþ
n zn;

it is obvious that the nth echo amplitude can be obtained as

Mþ
n ¼

1
n!

dn

dzn FðzÞ


z¼0
: ð28Þ
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Another expression for Mþ
n in the integral form can readily be de-

rived from the theory of functions of a complex variable:

Mþ
n ¼

1
2pi

I
FðzÞ dz

znþ1 : ð29Þ

In Refs. [12,13] it has been shown that at equal spin relaxation
times T1 = T2 (n1 = n2 = n) the echo amplitudes can be represented
as the sum of Legendre polynomials:

Mxn ¼
Mx0n

n

2
dn0 þ Pnðcos aÞ � Pn�1ðcos aÞ þ 4 sin2 a

2

Xn�1

k¼0

Pkðcos aÞ
" #

;

ð30Þ

Myn ¼
My0n

n

2
dn0 þ Pnðcos aÞ � Pn�1ðcos aÞ½ �:

Eq. (30) was obtained by straight-forward expansion of GF

FðzÞjn1 ¼ n2 ¼
Mx0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nz cos aþ n2z2

p
1� nz

" #

þi
My0

2
1þ 1� nzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2nz cos aþ n2z2
p" #

; ð31Þ

in a power series in z, employing the GF for Legendre polynomials
(Eq. (3)).

In a similar way the general case T1 – T2 can be considered, and
the exact expression for echoes can be found. To do this, let us re-
write Eq. (18) as

FðzÞ ¼ Mx0

2
1þ Xffiffiffiffiffiffiffi

XY
p

� �
þ i

My0

2
1þ Yffiffiffiffiffiffiffi

XY
p

� �
: ð32Þ

Using Eq. (3), one can represent 1=
ffiffiffiffiffiffiffi
XY
p

as follows:

1ffiffiffiffiffiffiffi
XY
p ¼

X1
k;l;m¼0

Pk
n1 þ n2

2
ffiffiffiffiffiffiffiffiffiffi
n1n2
p cos a

� �
Pm

n1 � n2

2i
ffiffiffiffiffiffiffiffiffiffi
n1n2
p cos a

� �
� Plð0Þilþmðn1n2Þ

kþm
2 nl

2zkþlþm: ð33Þ

Substituting this expression in Eq. (32) and collecting the coeffi-
cients preceding the same power of z, one obtains

Mxn

Mx0
¼ ðn1n2Þn=2

2
½dn0 þ ðSn þ vSn�1Þ

� cos aðv�1 þ vÞðSn�1 þ vSn�2Þ þ ðSn�2 þ vSn�3Þ�;
Myn

My0
¼ ðn1n2Þn=2

2
½dn0 þ ðSn � vSn�1Þ ð34Þ

� cos aðv�1 � vÞðSn�1 � vSn�2Þ � ðSn�2 � vSn�3Þ�;

where

Sn ¼
X

06kþ2p6n

Pk
v�1 þ v

2
cos a

� �
Pn�k�2p

v�1 � v
2i

cos a
� �

� Cp
2p

in�kð�1Þpv2p

22p ; ð35Þ

v ¼

ffiffiffiffiffi
n2

n1

s
¼ exp � TE

2
1
T2
� 1

T1

� �� �
ð36Þ

(we take into account that P2r+1(0) = 0 and
P2rð0Þ ¼ ð�1ÞrCr

2r=22r; r ¼ 0;1; . . . ; Cq
p ¼ p!=ðq!ðp� qÞ!Þ is the bino-

mial coefficient). A special case T1 = T2 (v = 1) (Eq. (30)) can easily
be derived from the general case.

Thus, the echo amplitudes can be expressed in terms of the
well-known Legendre polynomials, which are built in scientific
software. Nevertheless, for the nth echo the number of terms in
Eq. (35) increases as n2. Therefore, Eq. (34) is reasonable to be used
if the exact analytical formula for Mþ
n is required. Otherwise, it is

much easier to obtain echo amplitudes by straight-forward numer-
ical calculation from the GF, for example, by numerical expansion
it in a Taylor series (Eq. (28)) or by Fourier transform (Eq. (29) tak-
ing z = ei#); even 1000 and more echoes can be easily calculated by
these ways at once. However, for a more clear insight into the
behavior of spin echoes it would be preferable to have an approx-
imation and asymptotic form for large echo numbers.

6. Asymptotic behavior of echo-amplitudes in MRI CPMG pulse
sequence

6.1. Refocusing angle a = 0 or p

If there is no refocusing pulse in the CPMG pulse sequence (the
refocusing angle a = 0), it is clear that the echo-signal is not formed
at all. This exact result also follows immediately from the GF (18).
Another exact result can be obtained for a = p, when T2 exponential
decay of echo-amplitudes takes place, since no longitudinal mag-
netization is introduced in the transverse plane by p pulse. In this
case Eq. (18) can be rewritten in the following form:

F zð Þja¼p ¼
Mx0

1� n2z
þ i

My0

1þ n2z
ð37Þ

and hence, exact echoes (Eq. (28) or (29)) are

Mþ
n ¼ nn

2½Mx0 þ ið�1ÞnMy0� / expf�nTE=T2g: ð38Þ
6.2. Refocusing angle a = p/2, unequal spin relaxation times T2 < T1

In the CPMG pulse sequence with the refocusing angle a = p/2
and arbitrary T1 and T2 the GF (18) is:

FðzÞja ¼ p=2 ¼ Mx0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2zÞð1þ n1n2z2Þ
ð1� n2zÞð1� n1n2z2Þ

s" #

þ i
My0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zn2Þð1� n1n2z2Þ
ð1þ zn2Þð1þ n1n2z2Þ

s" #

¼ Mx0

2
1þ ð1þ n2zÞð1þ n1n2z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
2z2

� �
1� n2

1n
2
2z4

� �q
264

375
þ i

My0

2
1þ

ð1� n2zÞ 1� n1n2z2
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
2z2

� �
1� n2

1n
2
2z4

� �q
264

375: ð39Þ

Using the following expansion of the radical in Eq. (39):

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

2z2
� �

1� n2
1n

2
2z4

� �q ¼
X1

k;m¼0

P2kð0ÞP2mð0Þ

� ðin2zÞ2kðin1n2z2Þ2m
; ð40Þ

the exact expression for echoes can be found in a similar way as Eq.
(34):

Mxn

Mx0
¼ ðn1n2Þn=2

2
dn0 þ eS2 n

2½ � þ
eS2 n�2

2½ �
� �

cos2 pn
2
þ v sin2 pn

2

� �
;

Myn

My0
¼ ðn1n2Þn=2

2
dn0 þ eS2 n

2½ � �
eS2 n�2

2½ �
� �

cos2 pn
2
� v sin2 pn

2

� �
; ð41Þ

where

eS2m ¼ S2mja¼p=2 ¼
v
2

� �2mXm
2½ �

k¼0

v2

2

� �2k

Ck
2kCmþ2k

2mþ4k; ð42Þ

vis defined in Eq. (36), [n] is the integral part of n.
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For T2 < T1 the echo-amplitudes asymptotic forms (i.e., for
n ?1) are (see Appendix A):

Mxn

Mx0
	 ðn1n2Þn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pnðn1 � n2Þ
p ffiffiffiffiffi

n1

p
cos2 pn

2
þ

ffiffiffiffiffi
n2

p
sin2 pn

2

h i
; ð43Þ

Myn

My0
	 ðn1n2Þn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pnðn1 þ n2Þ
p ffiffiffiffiffi

n1

p
cos

pn
2
�

ffiffiffiffiffi
n2

p
sin

pn
2

h i
: ð44Þ

In this case echo decay is defined by the effective relaxation time
2T1T2/(T1 + T2). It can be explained as follows.

Let us consider one period of the sequence from echo to echo.
The refocusing pulse applied along the x axis totally removes the
y component of the magnetization vector from the transverse
plane and puts the z component into the plane. Therefore, the next
echo-signal will be defined only by the x and z magnetization com-
ponents at the moment of the current echo (for a qualitative expla-
nation we do not consider dephasing of different isochromats). We
suppose strict inequality T2 < T1, so when considering the asymp-
totic behavior, the contribution from the x component should be
neglected, since it relaxes with T2 for the whole period, while the
z one relaxes with T1 for the first half of the period (from the echo
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Fig. 1. Exact (open squares), asymptotic (dashed line), and analytically approxi-
mated (solid line) echoes (the x component); v = 0.75, refocusing angle a is p/2,
T1 =1 (n1 = 1). (a) Mn normalized to the maximum exact echo (Mnmax , nmax = 2) is
shown; (b) value (n1n2)�n/2Mn normalized to the exact value ðn1n2Þ�nmax=2Mnmax is
plotted to see better the last echoes.
to the pulse) and T2 for the second half of the period (from the
pulse to the echo). Thus, the behavior of echoes with large number
is defined by the factor

ffiffiffiffiffiffiffiffiffiffi
n1n2
p

.
Also note that there is a subdivision between even and odd ech-

oes [17], as shown in Fig. 1. It is also caused by a distinguishing fea-
ture of p/2 pulse consisting in that the longitudinal magnetization
returns to the z axis and the y component of the magnetization –
to the xy plane in two periods of the pulse sequence. So the relation
between consecutive echo amplitudes takes place:

Mx2kþ1

Mx2k

  ¼ My2kþ1

My2k

  ¼ n2 ¼ e�TE=T2 ;

Mx2kþ2

Mx2kþ1

  	 My2kþ2

My2kþ1

  	 n1 ¼ e�TE=T1 ð45Þ

(equality sign in the former equation follows from the exact expres-
sions for echoes (34) and (41)). Thus, the CPMG pulse sequence with
p/2 refocusing angle provides a simple way of simultaneous mea-
surement of T1 and T2, while the standard sequence a = p allows
measurement of T2 only.

6.3. Refocusing angle a – 0, p, equal spin relaxation times T1 = T2

The case of equal spin relaxation times T1 = T2 (n1 = n2 = n) was
considered previously in Refs. [12,13], where the following asymp-
totic forms for echoes were obtained for a in the range (0, p) and
nsin a� 1

Mþ
n 	 nnMx0 sin

a
2
�

cos na� p
4

� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn3 tan a

2

q
264

375þ innMy0

ffiffiffiffiffiffiffiffiffiffi
tan a

2

pn

r

� cos naþ p
4

� �
: ð46Þ

(Note that the expression (46) was obtained in our previous article
[13] (Eq. (36)), but the misprint was made: the phase p/4 in cosine
of the imaginary term was missing.) This asymptotic form can be
explained as follows. The relaxation just reduces the absolute value
of the magnetization (factor nn in Eq. (46)), but does not influence
its slope to the xy plane (since T1 = T2). Therefore, the case
T1 = T2 –1 differs from the case T1 = T2 =1 by the factor nn only.
Thus, to consider the oscillation, we can refer to the case T1 = T2 =1
0 2 4 6 8 10 12 14 16 18 20
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Fig. 2. Exact (open squares) and approximate (solid line) echoes (the x component)
normalized to the maximum exact echo (Mnmax , nmax = 4); T1 = T2 (v = 1), refocusing
angle a is p/3, n1 = n2 = 0.98.
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(n = 1). One can see from Eq. (46) that only Mxn includes nonzero sta-
tionary value (Mxst = sin(a/2)), since RF pulse rotates the magnetiza-
tion around the x axis, keeping the x component unchanged, while
theyandzonesarerotated. It isclearthattoperformonecompleteturn
of the magnetization around the x axis, 2p/a pulses are required, i.e.,
the period of oscillation is 2p/aas in Eq. (46) (for a qualitative explana-
tion we do not consider dephasing of different isochromats). Fig. 2
demonstrates the oscillatory behaviour of echoes for T1 = T2.

Eq. (46) corresponds to the known fact [5], that in absence of
spin relaxation the steady state of echoes in the CPMG sequence
(Mx0 = Meq, and My0 = 0) is sin(a/2). However, this result was not
obtained analytically in Ref. [5] for any a, but followed from
numerical solution for the CPMG pulse train. On the contrary, Eq.
(46) was derived analytically, using the GF approach.
6.4. Refocusing angle a – 0, p/2, p, unequal spin relaxation times
T2 < T1

A more complicated situation takes place for any refocusing an-
gle a – 0, p/2, p. For example, it can be shown that for short (but
still finite) T2 the decay of echo-amplitudes occurs with T1 spin
relaxation time instead of T2.

Indeed, let us consider one period (from echo to echo) of the
CPMG sequence of resonant RF pulses with arbitrary refocusing an-
gle a – 0, p/2, p. We shall also assume that T2 is short enough for
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Fig. 3. Exact (open squares), asymptotic (dashed line) and analytically approxi-
mated (solid line) echoes (the x component); v = 0.80, refocusing angle a is 2p/9,
T1 =1 (n1 = 1). (a) Mn normalized to the maximum exact echo (Mnmax , nmax = 4) is
shown; (b) value (n1n2)�n/2Mn normalized to the exact value ðn1n2Þ�nmax=2Mnmax is
plotted to see better the last echoes.
the transverse magnetization to have died out by the time of the
next RF pulse. Then, the next echo-signal will be determined by
the longitudinal magnetization turned partially into the xy plane
by the pulse, and the behavior of echoes will be governed by the
evolution of the z-magnetization. The evolution of the longitudinal
component for one period can be described by the factor exp(�TE/
T1)cosa (T1-relaxation and rotation by the RF pulse), and hence, it
is likely that the asymptotic behavior will be Mx,yn / [exp(�TE/
T1)cosa]n, i.e., in spite of very short T2, echo-signal decay can last
surprisingly long. This does take place in practice [18,19].

The asymptotic form of echo-amplitudes in the case under con-
sideration is derived in Appendix B and has the form:

Mxn

Mx0
	 A1

Bn

2
ffiffiffiffi
p
p n�1=2; ð47Þ

Myn

My0
	 � Bn

4A1
ffiffiffiffi
p
p n�3=2; ð48Þ

where

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ n2ÞðB� n1 cos aÞ

ðB� n2Þ B� 1
2 ðn1 � n2Þ cos a

� �s
; ð49Þ

and

B ¼ n1 � n2

2
cos a

 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � n2Þ2

4
cos2 aþ n1n2

s0@ 1A cos a
j cos aj : ð50Þ

From Eqs. (47) and (48) it follows that the asymptotic echo-ampli-
tude decay is not pure exponential, but is determined by the factor
Bn and power dependence on n. In particular, if T2
 T1 (n2
 n1)
and

ffiffiffiffiffiffiffiffiffiffiffiffi
n1=n2

p
j cos aj � 2, one obtains B 	 exp(�TE/T1)cosa, and the

asymptotic behavior corresponds to that discussed above for the
case of sufficiently short but finite T2. Fig. 3 demonstrates a good
agreement of exact and asymptotic echoes.

7. Analytical approximation for echoes

In the previous section the asymptotic forms for echo-ampli-
tudes for different cases were considered. However, comparison
with the exact results (see the next section) shows that the asymp-
totic regime can start from very large echo number. In experiment
the signal to noise ratio for such echoes with large numbers can be
too low. If the analytical formula for echo is required, one can use
the exact expression (34). However, it is rather inconvenient, so an
acute problem is to find an appropriate approximation that de-
scribes adequately the behavior of transient echoes. Below we give
such an analytical approximation for echo amplitudes. Derivation
of this approximation falls into two cases, whether the parameter
v from Eq. (36) is greater or less than some critical value v0:

v0 ¼ ð1� sinaÞ=j cos aj: ð51Þ

These derivations are given in Appendices C and D.
The division between the two cases was made to estimate more

accurately the corresponding integrals (see Appendices C and D),
while there is no division for the exact echoes (Eq. (34)). This divi-
sion can be explained as follows. If T1 – T2, the relaxation not only
reduces the absolute value of the magnetization, but also changes
its slope to the transverse plane, i.e., the magnetization, being
turned to the xy plane by the pulse, is returned toward the z axis
by the relaxation (compared with what was mentioned in Sec-
tion 6.3). Thus, the relaxation gives rise to the change of the num-
ber of pulses necessary for one complete turn of the magnetization
vector around the x axis. Moreover, it can occur that the relaxation
does not allow the magnetization make a complete turn around
the x axis at all, i.e., at some relation between T1, T2, TE and a the
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oscillation behavior of echoes disappears. For a certain isochromat,
this corresponds to the situation when all of the eigenvalues of the
Carr–Purcell matrix (the spin evolution matrix in the recursion (9)
of Ref. [13]) are real, while in the opposite case there are one real
and two complex eigenvalues [9]. When averaging over different
isochromats, the transition from the ’’oscillatory’’ case to the
‘‘non-oscillatory’’ one is described by the critical value v0. From
the mathematical point of view, this threshold arises from different
arrangement of the singular points of the GF (18) in the complex
plane (Figs. 4 and 5).

Strictly speaking, the theoretical limit for the transverse spin
relaxation time is T2 < 2T1 though the condition T2 > T1 is quite rare
Fig. 4. Integration path in the case cosa > 0 and v0 < v 6 1. The contour by-passes
branch points (the phase changes for the x component are shown near the
corresponding branch points).

Fig. 5. Integration path in the case cosa > 0 and v 6 v0 6 1. The contour by-passes
branch points (the phase changes for the x component are shown near the
corresponding branch points).
in practice [20]. Therefore, in this section we also consider the ana-
lytical approximation for T2 > T1, the derivations are similar to
those for T2 6 T1 described in Appendices C and D. The general con-
dition for the division between the ‘‘oscillatory’’ and ‘‘non-oscilla-
tory’’ cases for any T1 and T2 can be specified as follows. For

j ln vj < ln v�1
0 ð52Þ

the analytical approximation includes the oscillations, while in the
opposite case

j ln vjP lnv�1
0 ð53Þ

the oscillations are lacking. Subdivision between the two subcases
T2 6 T1 and T2 > T1 is cased by the fact, that in the latter subcase
the relaxation ‘‘presses’’ the magnetization vector to the xy plane,
while in the former subcase – to the z axis.

Numbers of the equations for the exact, asymptotic and analyt-
ically approximated echoes, that are presented in this and previous
sections, are summarized in Table 1.

7.1. Case 1: j lnvj < ln v�1
0 ; T2 6 T1

If j ln vj < lnv�1
0 ða – 0;pÞ and T2 6 T1, the analytical approxi-

mation is (see Appendix C):

Mxn

Mx0
	 A1

Bn

2
p1=2

1 �I0
np1

2

h i
þ ð1� �ÞI1

np1

2

h in o
e�np1=2

þ A2
ð�n1n2Þn

4�Bn p1=2
2 I0

np2

2

h i
þ ð2�� 1ÞI1

np2

2

h in o
e�np2=2

� A3
ðn1n2Þn=2

2n3=2
ffiffiffiffi
p
p cos nb� q

2

� �
: ð54Þ

Here I0[t] and I1[t] are the modified Bessel functions of the 1st kind,
and

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � BÞðBþ n2 cos aÞ

ðn1 þ BÞ B� 1
2 ðn1 � n2Þ cos a

� �s
; ð55Þ

A3 ¼
n1n2 � 1

4 ðn1 þ n2Þ2 cos2 a
� �1=4

ffiffiffi
2
p
ðn1n2Þ1=4 sin a

2

; ð56Þ

b ¼ arccos
n1 þ n2

2
ffiffiffiffiffiffiffiffiffiffi
n1n2
p cos a

� �
; ð57Þ

q is the same as in Eq. (C.10) and can be rewritten as:

q ¼ arctan
n1n2 þ 1

4 ðn1 þ n2Þ2 cos a
1
2 jn1 � n2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 � 1

4 ðn1 þ n2Þ2 cos2 a
q ð58Þ

and

p1 ¼
jBj
n2
� 1; ð59Þ

p2 ¼
n1

jBj � 1; ð60Þ

� ¼ 3
4
þ 1

4
cos a
j cos aj : ð61Þ

The corresponding expression for the y component is:

Myn

My0
	 ð�1Þ2�Bn

4A1n2��1 p
5
2�2�
1 2ð1� �ÞI0

np1

2

h i
� I1

np1

2

h in o
e�np1=2

� ð�1Þ2�ð�n1n2Þn

4A2Bnn2�2�
p

2��1
2

2 ð2�� 1ÞI0
np2

2

h i
� I1

np2

2

h in o
e�np2=2

þ ðn1n2Þn=2

A3
ffiffiffiffiffiffiffi
pn
p Re 1� j

n

� �
exp i nbþ q

2

� �h in o
;

ð62Þ



Table 1
Numbers of the expressions for the exact, asymptotic and analytically approximated echoes (if necessary, in parenthesis the magnetization component is indicated).

Case Exact expression (apart from Eqs. (28), (29), and
(34))

Asymptotic
form

Condition for the asymptotic form
validity

Analytical
approximation

T2 6 T1 (v 6 1)
j ln v j< ln v�1

0 ;a – 0;p; 54 (X), 62 (Y)

including
T1 = T2 30 46
T2 < T1, a = p/2 41 43 (X), 44 (Y) 65, 68
T2 < T1, a – p/2 47 (X), 48 (Y) 65

j lnvjP ln v�1
0 ; a – p=2; 69 (X), 74 (Y)

including
a = 0 No echo
a = p 38
a – 0, p 47 (X), 48 (Y) 75

T2 > T1 (v > 1)
j lnvj < ln v�1

0 ; a – 0;p, 85 (X), 87 (Y) 86 (X), 88 (Y) 78 (X), 79 (Y)

including
a = p/2 41
j lnvjP ln v�1

0 ; a – p=2 85 (X), 87 (Y) 94 (X), 95 (Y) 89 (X), 90 (Y)
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where

j ¼ ðv�1 � vÞ cos a sin b½ðv�1 þ vÞ cos b� 2�
�

þ2i ðv�1 þ vÞ cos2 b� 2 sin4 a
2

� �
cos b� 2

h io
� 8ðv�1 þ vÞ sin2 a sin b
h i�1

: ð63Þ

The first terms in Eqs. (54) and (62) describe the decay with the fac-
tor B, the second ones – with the factor n1n2/B, while the third ones
describe damped oscillations with a period 2p/b. One can see that
the period of oscillations in the third terms differs from that for
the case T1 = T2, i.e., 2p/a, and depends also on relation between
T1- and T2-relaxation, according to what was mentioned above.

For sufficiently short spin–spin relaxation time T2
 T1,TE one
has n1n2/B 	 n2/cosa
 n1n2
 B 	 n1cosa, so the echo decay oc-
curs with the factor n1cosa, as was discussed above (see
Section 6.4).

If T1 – T2 and a – p/2, the first terms in both expressions (54)
and (62) dominate at n ?1, so using the expansion:

Im½t� 	
etffiffiffiffiffiffiffiffi
2pt
p 1þ 1� 4m2

8t
þ � � �

� �
; t � 1; ð64Þ

one obtains the corresponding asymptotic expressions (47) and (48). The
corresponding condition for the asymptotic form validity is as follows:

n
2
jBj
n2
� 1

� �
� 1; ð65Þ

while the early echoes with the number n
 2(�1 + jBj/n2)�1 behave
like a sum of one or two exponents and damped oscillations:

Mxn

Mx0
	 A1

�Bn

2
p1=2

1 þ A2
ð�n1n2Þn

4�Bn p1=2
2 � A3

ðn1n2Þn=2

2n3=2
ffiffiffiffi
p
p

� cos nb� q
2

� �
; ð66Þ

Myn

My0
	 �ð1� �Þ Bn

2A1
p3=2

1 � �� 1
2

� �
ð�n1n2Þn

2A2Bn p3=2
2

þ ðn1n2Þn=2

A3
ffiffiffiffiffiffiffi
pn
p Re 1� j

n

� �
exp i nbþ q

2

� �h in o
: ð67Þ

At T1 = T2 the approximation (54) and the asymptotic form for
the x component (Eq. (46)) coincide. Finally, the asymptotic forms
(43) and (44) for the special case a = p/2 (and, hence, b = p/2) can
be obtained from the approximation for both cosa > 0 and cosa < 0
tending a to p/2 � 0 or p/2 + 0, respectively. From here, the condi-
tion for the asymptotic limit validity for p/2 refocusing angle is:
n
2

ffiffiffiffiffi
n1

n2

s
� 1

 !
� 1: ð68Þ

Thus, one can see that the asymptotic form in the case of simulta-
neous T1 = T2 and a = p/2 should be considered as tending T1 to T2

(i.e., v ? 1) first and a ? p/2 after that, otherwise one obtains the
diverging expression (see the discussion in Section 6.2).

7.2. Case 2: j lnvjP ln v�1
0 ; T2 6 T1

If j ln vjP lnv�1
0 ða – p=2Þ and T2 6 T1, the analytical approxi-

mation is (see Appendix D):

Mxn

Mx0
	 A1

Bn

4
p1=2

3 I0
np3

2

h i
þ I1

np3

2

h in o
e�np3=2

þ A2
ð�n1n2Þn

4�Bn p1=2
2 I0

np2

2

h i
þ ð2�� 1ÞI1

np2

2

h in o
e�np2=2

� A4
Cn

4n2�2� p
2��1

2
4 ð2�� 1ÞI0

np4

2

h i
� I1

np4

2

h in o
e�np4=2; ð69Þ

where

A4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC þ n2Þ 1

2 ðn1 þ n2Þ cos a� C
� �

ðC � n2Þðn1 cos a� CÞ

s
; ð70Þ

p3 ¼
CB

n1n2
� 1; ð71Þ

p4 ¼
jCj
n2
� 1; ð72Þ

C ¼ n1 þ n2

2
j cos aj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ n2Þ2

4
cos2 a� n1n2

s0@ 1A cos a
j cos aj : ð73Þ

The corresponding expression for the y component is as follows:
Myn

My0
	 � Bn

4A1
p3=2

3 I0
np3

2

h i
� I1

np3

2

h in o
e�np3=2
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4A2Bnn2�2�
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2

h i
� I1

np2

2

h in o
e�np2=2

þ Cn

4�A4
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4 I0
np4

2

h i
þ ð2�� 1ÞI1

np4

2

h in o
e�np4=2:

ð74Þ

According to the approximations, the echo behavior is described
by three terms, which give B-, n1n2/B- and C-decay factors, respec-
tively. If T2
 T1,TE, one has n1n2/B 	 C 	 n2/cosa
 B 	 n1cosa,
and echo amplitude decay occurs with the factor n1cosa, as was dis-
cussed above (see Section 6.4).
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For n ?1, a – 0,p/2,p (and, hence, T1 – T2, according to the
condition j ln vjP lnv�1

0 ) the first terms in both expressions
(69) and (74) dominate. As in the previous subsection, using the
expansion (64), the corresponding asymptotic forms (47) and
(48) can be obtained. Thus, the appropriate condition when the
asymptotic forms (47) and (48) fit well with the echo amplitudes
occurs for:

n
2

BC
n1n2

� 1
� �

� 1; ð75Þ

while, again, the early echoes (i.e., n
 2(�1 + BC/n1n2)�1) behave
like a sum of from one to three exponents:

Mxn

Mx0
	 A1

Bn

4
p1=2

3 þ A2
�n1n2ð Þn

4�Bn p1=2
2 � �� 1

2

� �
A4

Cn

2
p3=2

4 ; ð76Þ

Myn

My0
	 � Bn

4A1
p3=2

3 � �� 1
2

� �
ð�n1n2Þn

2A2Bn p3=2
2 þ Cn

4�A4
p1=2

4 : ð77Þ

At a = 0 and p the expressions (69) and (74) yield the exact re-
sults (see Eq. (38) and the discussion before it).

7.3. Case 3: j lnvj < ln v�1
0 ; T2 > T1

If j ln vj < lnv�1
0 ða – 0;pÞ and T2 > T1, the analytical approxi-

mation is:
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	 eA1

nn
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np5

2

h i
e�np5=2

� eA2
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2

h in o
e�np6=2

� A3
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2n3=2
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p cos nb� p� q

2

� �
; ð78Þ

and

Myn

My0
	 � nn
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4eA1n
p1=2

5 I1
np5
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h i
e�np5=2

þ ð�n2Þn

4eA2

p1=2
6 I0

np6

2

h i
þ I1
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h in o
e�np6=2

þ n1n2ð Þn=2

A3
ffiffiffiffiffiffiffi
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p Re 1� j
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� �
exp i nbþ p� q

2

� �h in o
: ð79Þ

Here

eA1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n1

n2 � n1
� 2 tan2 a

2

s
; ð80Þ

eA2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n1

n2 � n1
� 1
2

cot2 a
2

s
; ð81Þ

p5 ¼
eB
n1
� 1; ð82Þ

p6 ¼
n2eB � 1; ð83Þ

eB ¼ n1 � n2

2

  cos aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � n2Þ2

4
cos2 aþ n1n2

s
; ð84Þ

A3, q and j are the same as in Eqs. (56), (58) and (63), respectively.
One can see that in this case the echo decay is governed mainly

by T2-relaxation, and only the phase is changed in the oscillation
term. At T2 = T1 the two analytical approximations given here and
in Section 7.1 coincide. For T2 > T1 the asymptotic echo behavior
is as follows:
Mxn

Mx0
	 eA1

nn
2

2
ffiffiffiffi
p
p n�1=2 ð85Þ

for

n
2

eB
n1
� 1

 !
� 1; ð86Þ

and

Myn

My0
	 ð�n2Þn

2eA2
ffiffiffiffi
p
p n�1=2 ð87Þ

for

n
2

n2eB � 1
� �

� 1: ð88Þ

This asymptotic form is also valid at a = p/2, i.e., there is no more
subdivision between odd and even echoes for T2 > T1. This caused
by the fact that contrary to the discussion in Section 6.2 for
T2 < T1, here one should neglect T1-relaxation of the z component
and consider only the x one, which is not rotated by the pulse
and relaxes with T2 during the whole pulse sequence (for a qualita-
tive explanation we do not consider dephasing of different
isochromats).

7.4. Case 4: j lnvjP ln v�1
0 ; T2 > T1

If j lnvjP ln v�1
0 ða–p=2Þ and T2 > T1, the analytical approxima-

tion is:
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and
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Here

eA4 ¼
cos a
j cos aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ CÞ 1

2 ðn1 þ n2Þ cos a� C
� �

ðn2 � CÞðn2 cos a� CÞ

s
; ð91Þ

p7 ¼ 2ð1� �Þ n2

jBj þ ð2�� 1Þ jCj
n1
� 1; ð92Þ

p8 ¼ ð2�� 1Þ n2

jBj þ 2ð1� �Þ jCj
n1
� 1: ð93Þ

As in previous case, the echo decay is governed mainly by T2-
relaxation. The corresponding asymptotic form coincides with that
given by Eqs. (85) and (87), but the conditions for asymptotic limit
validity are different:

n
2

2ð1� �Þ n2

jBj þ ð2�� 1Þ jCj
n1
� 1

� �
� 1 for Mxn; ð94Þ

n
2
ð2�� 1Þ n2

jBj þ 2ð1� �Þ jCj
n1
� 1

� �
� 1 for Myn: ð95Þ

At a = 0 and p this approximation also yields the exact results
(Section 6.1).
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8. Analysis of asymptotic form and approximation accuracy

To test the asymptotic forms and analytical approximations ob-
tained, we have made up a table showing an echo number, from
which the corresponding expression describes adequately the ex-
act echoes (Tables 2 and 3). As a criterion, the following condition
was chosen:

d ¼ Map
n

Mex
n

� 1
  6 0:05 ð96Þ

(the superscripts ‘‘ap’’ and ‘‘ex’’ denote the approximated (by the
asymptotic form or analytical approximation) echo amplitude
and the exact one, respectively). Besides, since the situation
T2 > T1 is quite exotic, the analysis was performed for T2 6 T1

(v 6 1) only.
In Tables 2 and 3 the data format n1/n2(n3)/n4 was chosen,

that means the following. The numbers n1 and n2 are the echo
numbers, from which the criterion (96) is fulfilled for the
asymptotic form and the approximation, respectively; these
numbers are shown if only they less than or equal 100. The
number n3 in parenthesis is the actual echo number from which
the analytical approximation can be used with the criterion (96)
fulfilled, n3 is shown if only n3 < n2, n4. The appearance of n3 is
caused by the exclusion of some outlying values of d for very
small echoes (Mn/Mnmax 6 0.01), since the analytical approxima-
tion also yields very small values of the same order, but its accu-
racy is not sufficient for the criterion (96) to be fulfilled. For
comparison, the number n4 is presented, which is the echo num-
ber, from which the exact echo damps by 100 times compared
with the maximum one; n4 is shown if only it is less than or
equal 100. The boundary between the oscillatory (to the right
of the boundary) and non-oscillatory (to the left of the bound-
ary) cases of the analytical approximation is in bold type. Refo-
cusing angles a = 0 and p are not presented, since in these cases
the exact solutions are possible, and the analytical approxima-
tion also reproduces the exact results.

One can see that, as jcosaj increases, the asymptotic regime
starts later (number n1). It can readily be verified (Eq. (34)) that
echo amplitudes can be represented as:

Mnðn1; n2;aÞ ¼ ðn1n2Þn=2 eMnðv;aÞ ¼ nn
1v

n eMnðv;aÞ: ð97Þ

Thus, for example, for low a and v the asymptotic form starts work-
ing well too late, when the echo signal level can be rather low. At
Table 2
The accuracy of the asymptotic forms and analytical approximations for different values v ¼
asymptotic form and analytical approximation coincide).

a (�) v

0.1 0.2 0.3 0.4 0.5

10 –/1/– –/1/– –/1/– –/1/– –/1/–
20 –/1/77 –/1/79 –/1/84 –/1/92 78/1/–
30 –/2/34 –/2/36 94/2/38 51/2/40 29/2/48
40 –/2/20 –/2/21 44/2/32 23/2/24 11/13/28
50 –/2/13 50/2/13 21/4/14 9/11/16 4/2/19
60 96/2/9 23/4/9 8/9/10 3/2/12 6/2/14
70 38/2/7 8/9/7 5/2/8 5/2/9 5/2/11
80 8/8/5 5/2/6 6/2/6 9/4/7 9/4/9
90 16/8(2)/3 20/4/5 20/4/5 20/6/7 20/6/7

100 9/9/5 6/4/5 10/4/5 12/6(5)/7 20/8(4)/5
110 39/2/6 10/10/7 6/4/7 8/4/7 12/6/8
120 96/1/8 25/5/8 12/11/9 8/6/9 8/6/10
130 –/2/11 51/1/11 23/6/11 14/12/11 10/8/12
140 –/2/14 –/1/14 46/1/15 26/8/15 17/15/15
150 –/1/20 –/1/20 96/1/21 54/1/21 34/8/21
160 –/1/30 –/1/31 –/1/31 –/1/30 83/1/28
170 –/1/28 –/1/25 –/1/19 –/1/11 –/1/7
fixed a, with decreasing v the asymptotic form first begins working
earlier, and then with further decrease in v – later. The best point
for the asymptotic form lies near the boundary between the
oscillatory and non-oscillatory cases. This corresponds to the
conditions for the validity of the asymptotic forms (Eqs. (65) and
(75)): if v0 < v 6 1, the asymptotic threshold nas = 2(bv�1 � 1)�1

(b is defined in Eq. (C.12)) decreases with decreasing v,
while for v 6 v0 6 1 the corresponding asymptotic threshold
nas = 2(bc � 1)�1 (c is defined in Eq. (D.5)) increases with decreasing
v.

As for analytical approximation, it starts working much ear-
lier (numbers n2 and n3 in Tables 2 and 3) than the asymptotic
form (number n1 in the tables). The approximation for Myn is
worse than that for Mxn. This is caused by the features of the
integrals to be estimated. Near the point v = v0 the analytical
approximation becomes worse, but still good enough. In this re-
gion the estimation of the corresponding integrals (see Appendi-
ces C and D) can be carried out similarly, but this special case is
not treated in the present work not to complicate the
consideration.

The error of the approximate equations are also caused by the
following fact. When the corresponding integrals were estimated
(see Appendices C and D), only closeness of two out of all singu-
lar points of the GF was taken into account (points 8 and 9, 13
and 14 in Fig. 4; and points 6 and 7, 8 and 9, 11 and 12 in
Fig. 5). However, for instance, near the boundary between oscil-
latory and non-oscillatory cases, points 6 and 11 in Fig. 4 and 7
and 8 in Fig. 5 come close, and this should be also taken into ac-
count for higher accuracy, while we neglected this effect. Also, in
the region of simultaneous tending v ? 1 (T2 ? T1) and
jcosaj? 1 the closeness of more singular points should be con-
sidered, viz. points 6, 8, 9 and 11 in Fig. 4 and points 6, 7, 8
and 9 in Fig. 5. The next corrections to the estimation can be
calculated, but the form of the equations becomes more compli-
cated. We suppose, if one is interested in an accurate analytical
formula for the first echoes, the exact expression (34) can be
used. However, echoes can be easily calculated numerically
from the GF at once, for example, by numerical expansion it in
a Taylor series (Eq. (28)) or by Fourier transform of the GF
[12,13].

Figs. 1–3 demonstrate good agreement between approxi-
mated and exact echoes in the region, where it is sufficient to
take into account the correlation between two of the singular
points only.
ffiffiffiffiffiffiffiffiffiffiffiffi
n2=n1

p
and a in terms of n1, n2, n3 and n4; the x component (at v = 1, i.e., T1 = T2, the

0.6 0.7 0.8 0.9 1

–/1/– –/1/– 72/1/– 14/27/– 16/16/–
48/1/– 25/12/– 7/12/– 22/9/– 8/8/–
15/18/58 5/8/75 12/6/– 31/6/– 6/6/–
4/5/34 9/4/44 16/5/63 34/5/– 5/5/–
7/2/23 8/4/29 15/4/43 36/4/82 4/4/–
7/3/17 12/3/22 18/4/32 41/4/62 3/3/–
9/3/13 15/3/17 21/3/25 45/3/49 3/3/–
13/3/11 21/3/14 27/3/21 57/3/41 3/3/–
24/3/9 28/3/18 36/3/18 64/3/35 1/1/–
28/12(4)/7 42/18(3)/11 74/34(3)/17 –/90(2)/32 2/2/–
16/8(6)/9 24/12(2)/11 41/20(2)/15 96/50(2)/29 2/2/–
12/6(4)/11 18/8(2)/12 30/16(2)/16 72/38(2)/29 2/2/–
10/6/13 16/8(2)/13 26/12(2)/17 58/31(2)/29 2/2/–
14/10/17 14/8/17 24/12(2)/18 52/2/29 2/2/–
24/20/21 18/12/21 24/12(2)/19 50/28(2)/27 2/2/–
55/6(1)/26 38/23(7)/22 28/18(10)/17 50/30(2)/27 2/2/–
–/1/7 –/1/9 91/18(1)/13 60/38(2)/25 2/2/–



Table 3
The accuracy of the asymptotic forms and analytical approximations for different values v ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
n2=n1

p
and a in terms of n1, n2, n3 and n4; the y component.

a (�) v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 –/1/– –/1/– –/1/– –/1/– –/1/– –/1/– –/2/– –/2/– 64/86/– –/23 (6)/–
20 –/1/76 –/1/73 –/1/70 –/1/66 –/3/62 –/7/59 73/37/55 33/41/48 78/37(2)/47 –/3/–
30 –/2/34 –/1/33 –/1/31 –/8/29 82/7/28 43/52/26 23/26/25 40/10/22 99/50(2)/31 56/3/–
40 –/2/9 –/2/19 –/8/18 64/6/17 32/38/16 18/17/15 22/11(3)/16 48/7(2)/16 –/62(2)/32 –/2/–
50 –/2/13 –/8/12 59/6/12 27/31/11 15/12/9 18/7(3)/11 32/6/12 60/2/19 –/94(2)/33 99/2/–
60 –/2/9 66/6/9 25/27/8 13/10/7 18/3/7 27/12(5)/10 50/8(5)/10 86/38(1)/16 –/–(1)/30 26/2/–
70 –/8/7 24/25/6 12/8(3)/5 19/5/6 29/5/8 49/27(1)/9 74/43(7)/11 –/83(1)/16 –/12(1)/31 71/1/–
80 24/25/5 28/2/4 31/4/6 44/16(4)/6 70/34(3)/8 –/65(3)/10 –/63(2)/12 –/40(1)/16 –/1/32 60/1/–
90 20/4(2)/3 20/4/5 20/4/5 20/3/7 20/3/7 20/3/9 24/2/11 29/1/16 45/1/28 5/1/–

100 27/26/5 16/5/5 29/16(2)/4 42/21(2)/6 64/34(3)/8 91/14(3)/9 –/14(3)/11 –/32(5)/17 –/86(7)/31 50/1/–
110 –/7/6 30/28/6 19/14/6 22/13/5 32/13(6)/7 42/23(3)/9 67/33(3)/10 98/54(8)/15 –/44(8)/30 44/3/–
120 8/2/8 70/23/8 34/32/8 24/19/7 25/15/6 31/15(7)/10 43/20(3)/11 72/38(7)/17 –/86(3)/29 15/1/–
130 –/2/11 –/6/10 67/26/10 41/37/10 31/24/9 30/18/8 37/18(11)/13 58/24(8)/14 –/60(8)/28 47/1/–
140 –/2/14 –/2/14 –/4/14 75/31/13 51/46/13 41/30/12 39/22/15 54/22(4)/17 –/48(9)/34 54/1/–
150 –/1/20 –/1/20 –/1/20 –/1/20 99/38/19 70/31/18 56/40/18 54/28/23 96/40(13)/34 18/1/–
160 –/1/31 –/1/31 –/1/31 –/1/31 –/1/31 –/48/30 –/74/29 86/58/30 93/41(25)/35 89/8/–
170 –/1/30 –/1/33 –/1/38 –/1/44 –/1/50 –/1/55 –/7/58 –/98/59 –/–/61 –/15/–
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9. Conclusions

Employing the generating functions formalism [12,13], exact
explicit analytical expression for echoes in the Carr–Purcell–Mei-
boom–Gill sequence with arbitrary excitation and refocusing an-
gles and resonance offset of RF pulses was obtained. It was
shown, that the exact echo amplitudes can be expressed in terms
of Legendre polynomials.

Asymptotic form for echoes was derived in an elegant way and
analyzed in details. It was shown that the following cases for the
asymptotic regime can be distinguished. The first one is the case
of refocusing angle a = 0 or p, when the well-known exact solu-
tions exist (no echo at a = 0 and the result (38) at a = p). The sec-
ond one is the case a = p/2 and T1 – T2, when the echo behavior
is defined not only by T1 or T2, but by the effective relaxation time
2T1T2/(T1 + T2); besides, a subdivision between even and odd ech-
oes is observed. The third case is a – 0, p and T1 = T2, when damped
oscillations with a period 2p/a are to manifest themselves. And the
last case is a – 0, p/2, p and T1 – T2, when, for example, at suffi-
ciently rapid spin–spin relaxation the echo amplitude decay is de-
fined by T1 and refocusing angle a, rather than by T2.

However, for some parameter sets the asymptotic form starts to
adequately describe the echo behavior very late, when experimen-
tal signal level can be too low. To improve the description, we ob-
tained the analytical approximation that corresponds to the exact
echoes starting from sufficiently small echo number. This approx-
imation derived from the GF is convenient for numerical and ana-
lytical analysis, since it does not contain any multiple sums, but
only well-known analytical functions (the 0th- and 1st-order mod-
ified Bessel functions of the 1st kind). It was shown that, depending
on the relationship of parameters cosa and n2/n1, the echo behavior
can be described by three terms containing either three pseudo-
exponential decays or two pseudo-exponential decays and damped
oscillations. Numerical comparison shows good agreement be-
tween approximate and exact echoes.

Besides, it was shown that the generating function approach
can also be applied to the consideration of terminated pulse se-
quences, when after-pulses echoes are registered. The nonnull-
configurations of the generating function for a definite isochromat,
which are actually the generating functions for after-pulses echo
amplitudes, were determined.
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Appendix A. Derivation of Eq. (43)

Let us consider the CPMG pulse sequence with the refocusing
angle a = p/2. The corresponding GF for echo-amplitudes takes
the form (39). Let us introduce a new variable y ¼ z

ffiffiffiffiffiffiffiffiffiffi
n1n2
p

, so Eq.
(39) can be rewritten as

FðyÞ ¼ Mx0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vyÞð1þ y2Þ
ð1� vyÞð1� y2Þ

s" #

þ i
My0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� vyÞð1� y2Þ
ð1þ vyÞð1þ y2Þ

s" #
; ðA:1Þ

where v is the same as in Eq. (36), v < 1 for T2 < T1. We will consider
the x component only, as the y-one can be treated similarly. Then,
according to the complex function theory, Mxn (n P 1) can be calcu-
lated by the contour integral:
Mxn

Mx0
¼ 1

2
ðn1n2Þn=2

2pi

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vyÞð1þ y2Þ
ð1� vyÞð1� y2Þ

s
dy

ynþ1 : ðA:2Þ
The zeros of the numerator and denominator of the radical in Eq.
(A.2) are ±v�1, ±i, ±1. Taking y = eih, the contour of integration con-
tains four singular points, and the expression (A.2) can be rewritten
as:

Mxn

Mx0
¼ ðn1n2Þn=2

2p
Re

Z p

0

ð1þ veihÞð1þ e2ihÞ
ð1� veihÞð1� e2ihÞ

� �1=2

e�inh dh

¼ ðn1n2Þn=2

2p Re eip=4
Z p=2

0

cos h
sin h

1þ veih
� �
ð1� veihÞ

� �1=2

e�inh dh

(

þe�ip=4
Z p

p=2
� cos h

sin h

1þ veih
� �
ð1� veihÞ

� �1=2

e�inh dh

)
: ðA:3Þ

In the second integral it was taken into account that, when passing
the point h = p/2 (y = i), the phase changed to e�ip/2. Making the
change of variable h = p � x (h ? p � h) in the second integral, one
obtains
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Mxn

Mx0
¼ ðn1n2Þn=2

2p
Re eip=4

Z p=2

0

cos hð1þ veihÞ
sin hð1� veihÞ

� �1=2

e�inh dh

(

þ e�ip=4�inp
Z p=2

0

cos hð1� veihÞ
sin hð1þ veihÞ

� �1=2

einh dh

)
: ðA:4Þ

When n ?1, the main contribution to the integrals is determined
by h ? 0 (coth ? 1/h), i.e.,

Mxn

Mx0
	 ðn1n2Þn=2

2p

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v
1� v

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v
1þ v

s
cos np

" #

�
Z p=2

0

cosðnh� p=4Þffiffiffi
h
p dh: ðA:5Þ

Again, making the change h ? nh and usingZ 1

0

sin xffiffiffi
x
p dx ¼

Z 1

0

cos xffiffiffi
x
p dx ¼

ffiffiffiffi
p
2

r
ðA:6Þ

one obtains the result (43). The expression (43) diverges for n1 ? n2,
so the generate case n1 = n2 should be considered separately, and
the condition n(v�1 � 1)/2� 1 for the asymptotic form (43) can
be written.

Appendix B. Derivation of Eq. (47)

Consider now the case of refocusing angle a – p/2,p and un-
equal spin relaxation times T1 > T2 (n1 > n2). Introducing
y ¼ z

ffiffiffiffiffiffiffiffiffiffi
n1n2
p

, one can rewrite the GF (18) as:

FðyÞ ¼ Mx0

2
1þ

ffiffiffiffiffiffiffiffiffiffi
XðyÞ
YðyÞ

s" #
þ i

My0

2
1þ

ffiffiffiffiffiffiffiffiffiffi
YðyÞ
XðyÞ

s" #
;

XðyÞ ¼ ð1þ yvÞ 1� yðv�1 þ vÞ cos aþ y2	 

; ðB:1Þ

YðyÞ ¼ ð1� yvÞ 1� yðv�1 � vÞ cos a� y2	 

and

Mþ
n ¼
ðn1n2Þn=2

2pi

I
FðyÞ dy

ynþ1 : ðB:2Þ

We will consider the x component of the magnetization only, as the
y one can be considered in a similar way.

First we assume that 0 < a < p/2 (cosa > 0), then, in addition to
singular points ±1/v outside the unit circle, four more singular
points exist:

y1 ¼
v�1 þ v

2
cos aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðv�1 þ vÞ2 cos2 a� 1

r
;

y2 ¼
v�1 þ v

2
cos a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðv�1 þ vÞ2 cos2 a� 1

r
;

y3 ¼ �
v�1 � v

2
cos aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðv�1 � vÞ2 cos2 aþ 1

r
; ðB:3Þ

y4 ¼ �
v�1 � v

2
cos a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðv�1 � vÞ2 cos2 aþ 1

r
:

The point y4 < �1 lies outside, and the point 0 < y3 < 1 – inside the
unit circle. The positions of y1 and y2 depend on
x ¼ 1

2 ðv�1 þ vÞ cosa: if x 6 1, then y1 and y2 lie on the unit circle
(jy1j = jy2j = 1), otherwise, y1 > 1 and 0 < y2 < 1. It is easy to show
that jy3j < jy2j for any x. Indeed, the statement is obvious for x 6 1,
and for x > 1 the desired inequality can be represented in the fol-
lowing form:ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ p
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1þ p

p
< x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

; ðB:4Þ

where p = sin2a. At p = 0 (a = 0) the two sides of the inequality (B.4)
are equal, but this case corresponds to the absence of echo-signal
and is out of interest. For any p > 0 the derivative of the left-hand
side of the inequality (B.4) with respect to p is

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p

p � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1þ p

p < 0; ðB:5Þ

and thus, the left-hand side of Eq. (B.4) decreases with increasing p,
i.e., y3 < y2. Thus, assuming y = y3 eih for any x, one obtains:

Mxn

Mx0
¼ Re

Z p

0

ð1þ vy3eihÞðy3eih � y1Þðy3eih � y2Þ
ð1� vy3eihÞðy3eih � y4Þy3ð1� eihÞ

� �1=2
(

�ðn1n2Þn=2

2pyn
3

e�inh dh

)
: ðB:6Þ

For n ?1 the main contribution to the integral is determined by
h ? 0, and therefore,
Mxn

Mx0
	ðn1n2Þn=2

2pyn
3

ð1þvy3Þðy3�y1Þðy3�y2Þ
2ð1�vy3Þðy3�y4Þy3

� �1=2

�
Z p

0

cos nh�p
4

� �ffiffiffi
h
p dh¼ Bn

2
ffiffiffiffiffiffiffi
pn
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþn2ÞðB�n1 cosaÞ

ðB�n2ÞðB�1=2ðn1�n2ÞcosaÞ

s
: ðB:7Þ

Considering the case p/2 < a < p (cosa < 0) in a similar way, one ob-
tains Eq. (47).
Appendix C. Derivation of the analytical approximation (54)

If (1 � sina)/jcosaj < v 6 1 and 0 < a < p, not all the roots (B.3)
are real, viz. y1 and y2 lie on the unity circle. We first assume that
cosa P 0, since the case cosa < 0 can be considered in a similar
way. Taking y = eih in Eq. (B.2), one obtains:

Mþ
n

ðn1n2Þn=2 ¼
1

4p

Z p

�p
Mx0

ffiffiffiffiffiffiffiffiffiffiffiffi
XðeihÞ
YðeihÞ

s
þ iMy0

ffiffiffiffiffiffiffiffiffiffiffiffi
YðeihÞ
XðeihÞ

s !
e�inh dh: ðC:1Þ
Let us change the integration path to that shown in Fig. 4. When by-
passing the branch points, the radical phase changes should be ta-
ken into account, as shown in the same figure (we will treat the x
component only, since the y one can be treated in a similar way).
Taking into account the direction of integration as well, it can read-
ily be verified that only the following integrals contribute to the
integral in Eq. (C.1):Z p

�p
¼ 2

Z 8

9
�
Z 13

14
þ
Z 10

11
�
Z 5

6

� �� �
ðC:2Þ

(the indices denote the direction of integration, all integrals mean
principal values). Let us denote y1 = eib and b ¼ arccos 1

2 v�1þ
��

vÞ cos aÞ and consider each of the integrals separately (in what follows
Ik[t] means the modified Bessel function of the 1st kind).

C.1. Integration from the point 9 to the point 8

Taking h = �ilny3 � it, the integral
R 8

9 can be rewritten as
follows:

Z 8

9

ffiffiffiffi
X
Y

r
e�inh dh ¼ � ieip=2

yn
3

�
Z � lnðvy3Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ vy3etÞðy3et � y1Þðy3et � y2Þ
ð1� vy3etÞy3ðet � 1Þðy3et � y4Þ

s
e�ntdt: ðC:3Þ
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For n� 1 the integral (C.3) can be estimated asZ 8

9

ffiffiffiffi
X
Y

r
e�inh dh 	 1

yn
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�1 þ y3Þðy3 � y1Þðy3 � y2Þ

y2
3ðy3 � y4Þ

s

�
Z �y4v�1�1

0

e�nt

t1=2ð�y4v�1 � 1� tÞ1=2 dt ¼ p
yn

3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�1 þ y3Þðy3 � y4 � 2 cos bÞ

1þ y2
3

s
I0 �n

vþ y4

2v

� �
exp n

vþ y4

2v

� �
: ðC:4Þ
C.2. Integration from the point 14 to the point 13

Taking h = p � iln(�y4) � it = p + ilny3 � it, the integral
R 13

14 can
be rewritten as follows:Z 13

14

ffiffiffiffi
X
Y

r
e�inh dh ¼ � ie�ip=2

yn
4

�
Z lnðy3=vÞ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1� vy4etÞðy4et � y1Þðy4et � y2Þ
ð1� vy4etÞy4ðet � 1Þðy3 � y4etÞ

s
e�ntdt: ðC:5Þ

For n� 1 the integral (C.5) can be estimated asZ 13

14

ffiffiffiffi
X
Y

r
e�inh dh 	 � 1

yn
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 � y1Þðy4 � y2Þ
ðv�1 � y4Þðy3 � y4Þ

s

�
Z y3v�1�1

0

ðy3v�1 � 1� tÞ1=2

t1=2 e�ntdt

¼ � p
yn

4

y3 � v
2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy4 � y1Þðy4 � y2Þ
ðv�1 � y4Þðy3 � y4Þ

s

� I0 n
y3 � v

2v

� �
þ I1 n

y3 � v
2v

� �� �
exp �n

y3 � v
2v

� �
: ðC:6Þ
C.3. Integration from the point 11 to the point 10 and from 6 to 5

Taking h = b � it, the integral
R 10

11 can be rewritten as follows:Z 10

11

ffiffiffiffi
X
Y

r
e�inh dh ¼ � ie�inb

�
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ veibetÞeibðet � 1Þðeibet � e�ibÞ
ðveibet � 1Þðeibet � y3Þðeibet � y4Þ

s
e�ntdt: ðC:7Þ

For n� 1 the integral (C.7) can be estimated asZ 10

11

ffip X
Y

e�inh dh 	 �ie�inb
Z 1

0
t1=2e�nt dt

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ veibÞeibðeib � e�ibÞ

ðveib � 1Þðeib � y3Þðeib � y4Þ

s
¼ � ie�inb

2n3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ veibÞ sin b

ðveib � 1Þ sin b� i
2 ðv�1 � vÞ cos a

� �s
: ðC:8Þ

The integral
R 5

6 can be estimated in a similar way. It can easily be
verified thatZ 10

11
�
Z 5

6
¼ 2Re

Z 10

11

¼ �
1� 1

4 ðv�1 þ vÞ2 cos2 a
� �1=4

sin a
2

�
ffiffiffiffiffiffiffiffi
p

2n3

r
� cos nb� q

2

� �
; ðC:9Þ

where

q ¼ arctan
1þ 1

4 ðv�1 þ vÞ2 cos a
1
2 jv�1 � vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4 ðv�1 þ vÞ2 cos2 a
q : ðC:10Þ
Thus, the final expression for the analytical approximation of
the x component of echo amplitudes for cosa > 0 is as follows:

Mxn

Mx0
ðn1n2Þ�n=2 	 bn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ vÞð1� 2b cos bþ b2Þ

vðb2 þ 1Þ

vuut
� I0 n

b� v
2v

� �
exp �n

b� v
2v

� �
þ ð�1Þn

4bn

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2b cos bþ b2Þbv
ð1þ vbÞðb2 þ 1Þ

vuut
� 1� vb

vb
I0 n

1� vb
2vb

� �
þ I1 n

1� vb
2vb
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exp �n

1� vb
2vb

� �

�
1� 1

4 ðv�1 þ vÞ2 cos2 a
� �1=4

2
ffiffiffiffiffiffiffiffiffiffiffi
2pn3
p

sin a
2

cos nb� q
2

� �
;

ðC:11Þ

where
b ¼ 1
2
jðv�1 � vÞ cos aj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðv�1 � vÞ2 cos2 aþ 1

r
: ðC:12Þ
Combining Eq. (C.11) with the case cosa < 0 considered in a similar
way, one obtains Eq. (54).
Appendix D. Derivation of the analytic approximation (69)

For v 6 (1 � sina)/jcosaj 6 1, 0 6 a 6 p, a – p/2 all roots (B.3)
are real. We first assume that cosa > 0, since the case cosa < 0
can be treated in a similar way. Taking y = eih in Eq. (B.2), one ob-
tains Eq. (C.1). Let us change the integration path to that shown
in Fig. 5. When by-passing the branch points, the radical phase
changes should be taken into account, as shown in the same figure
(we will treat the x component only, since the y one can be treated
in a similar way). Taking into account the direction of integration
as well, it can readily be verified that only the following integrals
contribute to the integral in Eq. (C.1):

Z p

�p
¼ 2

Z 60

70
þ
Z 80

90
�
Z 110

120

( )
ðD:1Þ

(the indices denote the direction of integration, all integrals mean
principal values, primes in the integrals indicate that the corre-
sponding integration contour is that shown in Fig. 5, not in Fig. 4).
The integral

R 110

120 is the same as in Eq. (C.5), and the estimation is
the same, too (Eq. (C.6)). Let us consider each of the remaining inte-
grals separately.

Taking h = �ilny1 � it, the integral
R 60

70 can be rewritten as:Z 60
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ffiffiffiffi
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Y

r
e�inh dh ¼ � ie�ip=2

yn
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�
Z � lnðvy1Þ
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ð1þ vy1etÞy1ðet � 1Þðy1et � y2Þ
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e�ntdt

	 � 1
yn
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2yn

1
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� �
� I1 n
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2v
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exp �n

y2 � v
2v

� �
: ðD:2Þ

Taking h = �ilny3 � it, the integral
R 80

90 can be estimated in a similar
way:
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Z 80

90

ffiffiffiffiffiffiffiffiffiffiffiffi
XðeihÞ
YðeihÞ

s
e�inh dh ¼ � ieip=2

yn
3

�
Z lnð�y2y4Þ

0
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ðv�1 � y3Þðy3 � y4Þ

s Z �y2y4�1

0

ð�y2y4 � 1� tÞ1=2

t1=2 e�ntdt

¼ pð�y2y4 � 1Þ
2yn

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�1 þ y3Þðy1 � y3Þ
ðv�1 � y3Þðy3 � y4Þ

s
� I0 n

�y2y4 � 1
2

� ��
þI1 n

�y2y4 � 1
2

� ��
exp �n

�y2y4 � 1
2
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: ðD:3Þ

Thus, the final expression for the analytical approximation for the x
component of echo amplitudes for v 6 (1 � sina)/jcosaj 6 1 and
cosa > 0 is as follows:
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2
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2
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2
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4
c � v

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ vÞð1� c2Þb
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s
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c � v
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exp �n

c � v
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1� vb
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ðbþ cÞð1þ bcÞvb
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2vb
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2vb
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exp �n

ð1� vbÞ
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; ðD:4Þ

where

c ¼ 1
2

v�1 þ v
� �

cos aj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

v�1 þ vð Þ2 cos2 a� 1

r
ðD:5Þ

and b is the same as in (C.12). Combining Eq. (D.4) with the case
cosa < 0 considered in a similar way, one obtains Eq. (69).
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