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1. Introduction

Magnetic Resonance Imaging (MRI) is widely used in medical
and biological research. At the same time the method shows prom-
ise for studying chemical reactions in situ [1], fluxes, mass transfer
process [2], material structure and properties [1-3]. Long trains of
periodic RF pulses make an integral part of NMR and MRI methods.

Echo pulse sequences conventionally used in MR imaging con-
tain © and 7/2 resonant RF pulses that are primarily chosen for
the simpler data analysis. For instance, the classic Carr-Purcell-
Meiboom-Gill (CPMG) pulse sequence

(E/Z),yfTE/anxfTE—nxfTEfnxf... (1)

(TE is echo time (inter-pulse period), subscripts “—y” and “x” denote
the pulse phase) consists of m/2 excitation pulse and 7 refocusing
pulses. However, it is known that any refocusing pulse can produce
spin echoes [4,5]. Moreover, using smaller flip angle of the RF pulse
appears to be an actual problem in MRI since it can permit one to
decrease full scanning time [6], does not demand preliminary
time-consuming calibration of the RF probe, and permits one to de-
crease the RF load. Understanding echoes in any flip angle regime is
also actual for NMR logging [7].

The response of the CPMG sequence has been heavily studied
[4,5,8-11]. Some of these approaches involve the eigenvalues anal-
ysis of the operators of evolution of the magnetization vector
[9,10], others rest on direct calculation of the magnetization by
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the recursion [8,11] or consider the asymptotic regime only [10].
Most of these approaches uses numerical methods, and they lack
a closed form expression for echo signal. However, possession of
an analytical expression is an important point, since it allows one
to get a deeper insight into the nature of the signal formation. Nev-
ertheless, a direct laborious derivation of an analytical form of echo
from the Bloch equations has not been performed so far.

To this end, earlier we proposed and developed a new general
approach for analysis of spin system response to a periodic pulse
train with arbitrary excitation and refocusing flip angle and reso-
nance offset [12,13]. This approach is based on the generation
functions (GF) formalism, which is very known in mathematics
[14], and allowed us to obtain analytical results in an elegant
way. The essence of the formalism is as follows. If one has a num-
ber series (infinite in a general case) My, M5 ..., M,, ..., then the
corresponding GF is the following function of a complex variable z:

F@)=Mo+Miz+ -+ M2 +--- = > M,2", 2)
n=0

where |z| < 1, which usually ensures the convergence of the series.
Thus, the GF comprises complete information about all values M,, at
once. The advantage of the GF approach is that the GF often has a sim-
ple analytical form, whereas the explicit expression for M, cannot be
obtained analytically or is very cumbersome. For instance, the form of
the generating function for Legendre polynomials

- 1
_ k
S@) =X Pz = sy 3)

is much simpler than that for the polynomials.
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Taking z =" (0 < ¥ < 2m) or z=e~* (s > 0), one can see that GF is
actually a discrete Fourier or Laplace transform of the M, series.
Therefore, M,, can be calculated easily using conventional Fourier
transformation of the GF. One can consider echo amplitudes in
the CPMG pulse sequence as the values M,, (hereafter by the term
“echo amplitude” we mean the net complex magnetization
M = M, +iM,, at the moment of the echo). GFs for echoes induced
by various periodic pulse sequences can then be tabulated as it is
done for Fourier or Laplace transformations of various functions.

In Refs. [12,13] we obtained analytically the GFs for echo ampli-
tudes in the CPMG sequence with resonant and nonresonant RF
pulses with arbitrary refocusing angle, respectively. The asymp-
totic form for echo amplitudes in case of equal spin relaxation
times Ty = T, was also found [12,13].

The study of the asymptotic behaviour from our point of view is
important to better understand the general properties of the CPMG
sequence, and besides, the asymptotic form allows one to easily
obtain the information about T; and T, relaxation times using
experimental echoes with large numbers. Other reasons come from
NMR logging where due to the wide distributions of static and RF
magnetic fields, the asymptotic behavior is quickly reached [10].
However, it turns out that for some relation between relaxation
times and refocusing angle « echo asymptotic form shows good
agreement with the exact one only for very large numbers of ech-
oes. Thus, an actual task arises to obtain analytical approximations
which are relatively simple and work well for transient echoes.

In the present work we employ the GF, obtained earlier, to de-
rive explicit expressions for the echo amplitudes, their asymptotic
behavior and analytical approximations for them for arbitrary T;
and T.

In what follows, the diffusion effects are neglected, the RF pulse
effect is treated as instantaneous rotation of the magnetization
vector, spin relaxation during the pulse is neglected.

The paper is organized as follows. In Section 2, we consider the
GF for a definite isochromat in the CPMG sequence and apply the
configuration approach to it. In Section 3 MRI CPMG pulse se-
quence is considered, when a linear magnetic field gradient is
switched on between the pulses only. It is shown, that in this case
averaging over inhomogeneous broadening, induced by the gradi-
ent, can be easily performed immediately in the GF. Some com-
ments on terminated MRI pulse sequences are also made.
Applicability of the GF approach to NMR logging is discussed in
Section 4. In Section 5 exact expression for MRI CPMG echoes are
derived. It is shown, that the echo amplitudes can be expressed
in terms of the well-known Legendre polynomials. In Section 6
the asymptotic behavior of echoes is determined. It is shown, that
four cases for the asymptotic regime can be distinguished. In Sec-
tion 7 analytical approximations for echo amplitudes are pre-
sented. In particular, it is shown that depending on T;, T, and
parameters of the pulse sequence, oscillatory behavior of echoes
can take place. Analysis of accuracy of the asymptotic form and
analytical approximation is performed in Section 8.

2. Generating function for a definite isochromat in the CPMG
sequence. The Configuration approach

Let us consider the CPMG pulse sequence with arbitrary refo-
cusing angle o«. The pulses are allowed to be off resonance, and
Ao is the resonance offset for a given voxel. The corresponding
GF for the magnetization of a definite isochromat is defined by
Eq. (6) of Ref. [13]. If M{ = My + iMyo = Meqm§, My = Myo—
iMyo = M¢gmy and Myo = m,oM,q are the magnetization components
just after the excitation pulse, and M, is the equilibrium magneti-
zation, then the GF for the transverse magnetization M* = My + iM,,
of a certain isochromat has the following form:

fz) _ Domy + QU + Q,U* +Q5U°

Mg Do + D, U? + D,U*

where

Q =257 0 =228 L2 P )|, 5)
Q= [1—2z& (27 — p?))mg + 2& (1 + z¢)my, (6)
Do = (%TYDZ = 26,02 (1 - z8), (7)
Di =1-2248 - 2(&4 - 25) (12 - 1), ®)
),:sin(psin%+icos%, 9)
,u:cosq)sin%, (10)
U—e, (11)

and star denotes complex conjugation. Here

o =T\ 1+ (Aw/m)?, (12)

¢ = arctan(Aw/wy), (13)

w1 = YBy, By is RF field amplitude, 7 is the refocusing pulse duration,
i.e., w17 is the nominal refocusing angle; y is the nucleus gyromag-
netic ratio, ¢;,=exp{-TE/T;,}, T; and T, are spin-lattice and
spin-spin relaxation times, respectively, TE is echo time (inter-pulse
period), and  is the phase accumulated during one half of the
inter-pulse period for a definite isochromat.

As was mentioned in Ref. [13], the magnetization of a certain
isochromat can be represented in the following form:

2n
M, (01, A0, U) = " K1, Aw)UF, (14)

k=-2n

Ki_2n = Ky_2n+1 = 0 for n # 0, that is actually a decomposition of the
magnetization into the so-called configurations [5]. Therefore,
the GF (4) for a definite isochromat can also be decomposed into
the configurations:

f2) =f(z,01,A0,U) = img(w1,Aw, U)z"
n=0

+00
> Fulz, n, AU, (15)

k=—o00

where the kth configuration

Fi(z, 01, A0) = Y~ K1, Aw)Z" (16)

n=|k|/2

depends on the pulse parameters only, while fast oscillating factor
U* is determined by the resonance offset between pulses, which
can be different from that during the pulse (for instance, because
of application of a magnetic field gradient).

Exact explicit analytical expression for M, (1, Am, U) of a def-
inite isochromat can be obtained from Eq. (4), but the final expres-
sion is a multiple sum, which is very cumbersome, and will not be
presented here.

3. Generating function for CPMG echo amplitudes in MRI

In MRI pulse sequences a linear magnetic field gradient G is
switched on between the pulses only, therefore,

R ~ _ TE
¥ = Yyp(F) = (Aw + )G, 1')7» (17)

and if the range of g, is wide enough, averaging over inhomoge-
neous broadening (isochromats) induced by the magnetic field
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gradient, is reduced to the consideration of the null-configuration
Fo(z, w1, Aw) in Eq. (15) only, that tremendously simplifies the GF form.
For the MRI CPMG pulse sequence with arbitrary refocusing an-
gle o, and the excitation pulse angle is not necessarily equal to 7/2,
the null-configuration Fy(z, w1, Aw), which is actually the GF for
CPMG echo amplitudes M, in MRI, was determined in Ref. [13]:
MXO

> X

_ +n __ -

Fo(2) _;M,,z == 1+\/;

X =(1+2&)[1 - 2(& + &)(cosocos® @ +sin” @) +2%¢,&,],  (18)
Y = (1-28)[1—2(& — &)(cosacos? @ +sin’ ) — 228,,),

M,

2

1445

+1 %

where all notations are defined in the previous section. Quantities
Mo and M, are the x and y components of the initial magnetization
vector My just after the excitation pulse, respectively:

Mo = My, €OS @ sin <w1 T3/ 1+ (Aa)/wl)2>,
Myo = M sin 2¢p sin’ <“’12T1 J1+ (Aa)/(m)z), (19)

where 7 is the excitation pulse duration, and w7, is the nominal
excitation angle. The parameters of the excitation pulse are only
manifested in this initial condition for the transverse magnetization.
Therefore, actually the GF (18) describes both the CPMG and CP
(Carr-Purcell) pulse sequences, as well as the sequences with arbi-
trary phase of the excitation pulse (one should choose the appropri-
ate initial condition). Moreover, as was shown in Ref. [13], Eq. (18)
can be extended to the echo-sequence with phase cycling of the refo-
cusing pulses (i.e., when the phase of the nth refocusing pulse is
(n — 1)¢), if values M,, in Eq. (18) are regarded now as el™1/2¢M,
where M is the net transverse magnetization as before. For example,
at ¢ = 7, i.e,, when the x and —x phases of the refocusing pulses are
alternated, the CPMG sequence turns in fact to the CP one and vice
versa, that corresponds to the results presented in Ref. [15].

It follows from the form of the GF (18), that nonresonant case
(Aw # 0) can be reduced to the resonant one (Aw = 0) with rede-
fined refocusing angle o:

€OS 0, = €OS 0.COS?  + sin’ ¢, (20)

i.e., one can consider the sequence consisting of nonresonant pulses
as the resonant pulse train with refocusing angle o. This interesting
result was first obtained in Ref. [16] and naturally follows from the
GF form [13]. Thereby, henceforth, when considering infinite pulse
sequences, i.e., when the refocusing pulse precedes the echo signal,
we will address only to resonant RF pulse case.

3.1. After-pulses echoes

The original GF (4) for a definite isochromat comprises a com-
plete information about all configurations and their contributions
to echoes at once. Hence, it permits one to solve even a more gen-
eral problem, when the pulse sequence is terminated after the mth
refocusing pulse, and the after-pulses echoes M, are registered at
the time points t = (m + %) x TE, provided that the same periodic
scheme for magnetic field gradient is continued:

Fn(z, 01,A®) = F_o(2) = "2 Y My, 2", (21)
m=0

i.e., the nonnull-configurations of the GF (4) are actually the GFs for
after-pulses echo amplitudes, i.e. for magnetization averaged over
isochromats at the moment of the echo. The expression for F_,(z)
can be obtained by integration of f{z, U)U"! over variable U along
the unity circle contour in the complex plane. The final expressions
for F_,(z),n=0,%1,..., are as follows:

Foaul@) = [Ur(2)]*[Fo(2) = (1 = 00)Mg . (22)
and
Fan@=28" L Ui(2) [1 L_gel :'Z"Cj 2610 ~ 1

(1-228) (1A - i —z&1)
23
+ XY , (23)
where
D vXY
Ul(z):—z—Dlz‘*‘m; (24)

and Fy(z), X and Y are defined in Eq. (18); note, that X, Y, D; and D,
are also functions of z.

4. Generating function for CPMG echo amplitudes in NMR
logging

In NMR logging, in contrast to MRI pulse sequences, a certain
isochromat has the same resonance offset Aw = Aw(¥) during both
the pulse and the inter-pulse period, and phase incursion for a half
of the inter-pulse period for a definite isochromat is now

V= l/’Logging(F) = Aw(ﬂg (25)

Thus, Aw is the same for both Fi(z, =, Aw) and U* in Eq. (15), and
averaging over different isochromats cannot be directly performed
by simple exclusion of the terms with k # 0 (the nonnull-configura-
tions), but the complete GF (4) should be weighted with the w; and
Ao distribution s(wq, Aw) and integrated:

Feeno(2) = / / f(z, w1, Ao, e”gm)s(an ,Aw)dw, dAw (26)

(index “echo” denotes the GF for the net echo signal). Nevertheless,
we suppose even in this case the GF (4) for a definite isochromat
strongly simplifies the computation process, since averaging over
Aw and w can be performed in the GF at once.

Moreover, the coefficients Fi(z, w1, Aw) in Eq. (15) are some

functions of Aw/w; and 4/1 + (Aw/w,)* and depend weakly on
the offset A compared to fast oscillating factor e~*A®TE/2 There-
fore, even in this case the nonull-configuration contributions in Eq.
(26) can be omitted to a high accuracy, if the width I" of Aw-dis-
tribution is wide enough:

1
X TE>1. (27)

Then, in Eq. (26) one can use the function (18) instead of
f(z, w1, Aw, e~ %), that was verified numerically for homogeneous
(rectangular) and gaussian Aw-distributions.

For the same reason for the terminated pulse sequences only
the corresponding configuration F_,(z) can be considered.

5. Exact expression for MRI CPMG echo amplitudes

In what follows, we consider infinite MRI CPMG pulse sequences, i.e.,
the refocusing pulse precedes the echo signal. The corresponding GF for
echo amplitudes is determined by Eq. (18), and from now on, the index
“0” will be omitted. Since echo amplitudes M;; = M, + iM,, are the
coefficients preceding z" in power expansion of GF

F(z) = ZM,TZ",
n=0

it is obvious that the nth echo amplitude can be obtained as

1d"
+ __
My =g

F2) (28)

z=0
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Another expression for M, in the integral form can readily be de-
rived from the theory of functions of a complex variable:

1 dz
+ e — —_—
M; = 5  F@) . (29)

In Refs. [12,13] it has been shown that at equal spin relaxation
times T; =T, (& = & = &) the echo amplitudes can be represented
as the sum of Legendre polynomials:

_ Mxof" 2 U oL
My, = S0 + Pn(cos o) — P_q(cos o) + 4 sin® 5 kz (COS )
(30)
ofn
Myn = —5"—[dno + Pn(cos o) — Pp_1(cos t)].
Eq. (30) was obtained by straight-forward expansion of GF
; V1 =2 cosa+ £22
F(Z)\lefzfz { 1-&
LiMo g 4 1-c 31)
2 V1 -2¢zcoso + &2

in a power series in z, employing the GF for Legendre polynomials
(Eq. (3)).

In a similar way the general case T; # T, can be considered, and
the exact expression for echoes can be found. To do this, let us re-
write Eq. (18) as

F(z) :Ngo {1 +¢%} +i#[l +¢%_Y} (32)

Using Eq. (3), one can represent 1/vXY as follows:

H+& ) ( LH—-& )
coso | P, - . COS U
k;O ‘ (2\/“5 5 "\2VEG
% P[(O) ler(g f )T"' Zk+l+m (33)

Substituting this expression in Eq. (32) and collecting the coeffi-
cients preceding the same power of z, one obtains

Ma _ (416"
Myo 2

[5110 + (Sn + Xsn—l)

—cosa(y" + 1)(Sn-1 + xSn-2) + (Sn2 + 2Sn-3)],

My (68"

My 2 [0n0 + (Sn — XSn-1) (34)
—coso(y " = 2)(Sn-1 — ASn-2) = (Sn-2 — xSn-3)];
where
1, y1_
Sp = Z Py (X 2+ L cos oc) Pn2p (’{ T £ cos oc>
0<k-+2p<n !
n—k
(1)
o (22p) L (35)
e TE(1 1
1=\z-ee{-5 (5 1)) o)

(we take into account that Py+1(0)=0 and
Py (0) = (-1)'C, /2%, r=0,1,...; C?=p!/(q!(p — q)!) is the bino-
mial coefficient). A special case T; =T ()} = 1) (Eq. (30)) can easily
be derived from the general case.

Thus, the echo amplitudes can be expressed in terms of the
well-known Legendre polynomials, which are built in scientific
software. Nevertheless, for the nth echo the number of terms in
Eq. (35) increases as n. Therefore, Eq. (34) is reasonable to be used

if the exact analytical formula for M, is required. Otherwise, it is
much easier to obtain echo amplitudes by straight-forward numer-
ical calculation from the GF, for example, by numerical expansion
it in a Taylor series (Eq. (28)) or by Fourier transform (Eq. (29) tak-
ing z = ¢"”); even 1000 and more echoes can be easily calculated by
these ways at once. However, for a more clear insight into the
behavior of spin echoes it would be preferable to have an approx-
imation and asymptotic form for large echo numbers.

6. Asymptotic behavior of echo-amplitudes in MRI CPMG pulse
sequence

6.1. Refocusing angle «=0 or 7t

If there is no refocusing pulse in the CPMG pulse sequence (the
refocusing angle o = 0), it is clear that the echo-signal is not formed
at all. This exact result also follows immediately from the GF (18).
Another exact result can be obtained for = 7w, when T, exponential
decay of echo-amplitudes takes place, since no longitudinal mag-
netization is introduced in the transverse plane by 7 pulse. In this
case Eq. (18) can be rewritten in the following form:

_ MXO . MyO
F(Z)|o¢:7z - 1— éZZ ll + 522 (37)
and hence, exact echoes (Eq. (28) or (29)) are
M, = E[Myo + i(—=1)"Myo] < exp{—nTE/T,}. (38)

6.2. Refocusing angle o = 1/2, unequal spin relaxation times T, < T;

In the CPMG pulse sequence with the refocusing angle « = /2
and arbitrary T; and T, the GF (18) is:

(1+ &2)(1 + &152%)
= 2_
Pl =nf2== \/< zZ)(161ézZZ)}
+1M (1-25) 1—C1€222)
2 1 +Zfz 1+ C]QZZZ)
:Mxo 14 (1+ &H2)(1 + 6,62)
2| Ju-ga)a-aagn)
M|y (1-62)(1- 467 39)

2 Ja-daa-ga|

Using the following expansion of the radical in Eq. (39):

\/(1 ! - Z PZk PZm

)(1—61 224) k,m=0
x (i62)" (ie1&2°)™", (40)
the exact expression for echoes can be found in a similar way as Eq.
(34):

%0 - % (300 + Sapy + Sapiy) (cost 5+ zsin* ),

%j; = % Sno + 52[%] - 'sz[%) (cos2 % — ysin® %), (41)
where

~ am 8]

Som = Samlyryp = (%) 2 (7) CZ,CC;”,:E";M (42)

xis defined in Eq. (36), [n] is the integral part of n.
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For T,<T; the echo-amplitudes asymptotic forms (i.e., for
n — oo) are (see Appendix A):

M (Q]fz mn — . 2 In

%7 & cos? +\/ sin” —|, 43
Mo /mn(g, — [ Gsin’ 5] (43)
Myn ~ (él £2

MyON\/ﬁ[\/—COS ~V&sin® ] (44)

In this case echo decay is defined by the effective relaxation time
2T1T,/(T; + T). It can be explained as follows.

Let us consider one period of the sequence from echo to echo.
The refocusing pulse applied along the x axis totally removes the
y component of the magnetization vector from the transverse
plane and puts the z component into the plane. Therefore, the next
echo-signal will be defined only by the x and z magnetization com-
ponents at the moment of the current echo (for a qualitative expla-
nation we do not consider dephasing of different isochromats). We
suppose strict inequality T, < T;, so when considering the asymp-
totic behavior, the contribution from the x component should be
neglected, since it relaxes with T, for the whole period, while the
z one relaxes with T; for the first half of the period (from the echo

(a)]

1,0
0,8 1
0,6
0,4 -

0,2 1

0,0

(b)]

1,0
0,8
0,6

0,4 4

0,2 4

00T T T T T T 1
o 4 8 12 16 20 24 28 32

n (echo number)

Fig. 1. Exact (open squares), asymptotic (dashed line), and analytically approxi-
mated (solid line) echoes (the x component); y = 0.75, refocusing angle o is /2,
Ty =00 (&1 =1). (a) M, normalized to the maximum exact echo (Mp,., Nmax = 2) is
shown; (b) value (&) "?M, normalized to the exact value (cflcfz)’”"“’”zM,,mﬂx is
plotted to see better the last echoes.

to the pulse) and T, for the second half of the period (from the
pulse to the echo). Thus, the behavior of echoes with large number
is defined by the factor /& &,.

Also note that there is a subdivision between even and odd ech-
oes [17], as shown in Fig. 1. It is also caused by a distinguishing fea-
ture of /2 pulse consisting in that the longitudinal magnetization
returns to the z axis and the y component of the magnetization -
to the xy plane in two periods of the pulse sequence. So the relation
between consecutive echo amplitudes takes place:

Mx2k+1 _ My2k+] 7& 7871'5/1'2
= =¢y = s
Mx2k Mka
Moksn N Myoii2 s _ o TE/T, 45
T ~ |5 ~E =€ (45)
x2k+1 y2k+1

(equality sign in the former equation follows from the exact expres-
sions for echoes (34) and (41)). Thus, the CPMG pulse sequence with
7/2 refocusing angle provides a simple way of simultaneous mea-
surement of T; and T,, while the standard sequence « = 7 allows
measurement of T, only.

6.3. Refocusing angle o # 0, 7, equal spin relaxation times T; = T,

The case of equal spin relaxation times T; =T, (& = & = &) was
considered previously in Refs. [12,13], where the following asymp-
totic forms for echoes were obtained for « in the range (0, ) and
nsin ot > 1

. cos (not — % . tang
M; =~ "My sm% *M +1E"Myo\/ —2
2,/mn3 tan zn
T
X COS (noc + Z)' (46)

(Note that the expression (46) was obtained in our previous article
[13] (Eq. (36)), but the misprint was made: the phase 7/4 in cosine
of the imaginary term was missing.) This asymptotic form can be
explained as follows. The relaxation just reduces the absolute value
of the magnetization (factor ¢" in Eq. (46)), but does not influence
its slope to the xy plane (since T;=T,). Therefore, the case
T, =T, # oo differs from the case T; =T, = oo by the factor &" only.
Thus, to consider the oscillation, we can refer to the case T; =T, = oo

1,0 a
0,9 -
0,8
0,7 -
0,6
0,5 -
0,4

0,3 1

0,2 +—r—1——+—1—"—1—"—1"—1"—1"—————1
0 2 4 6 8 10 12 14 16 18 20

N (echo number)

Fig. 2. Exact (open squares) and approximate (solid line) echoes (the x component)
normalized to the maximum exact echo (Mp,,, Mmax = 4); T1 = T2 (% = 1), refocusing
angle o is 7/3, & = & =0.98.



M.V. Petrova et al./Journal of Magnetic Resonance 212 (2011) 330-343 335

(¢ =1).0ne can see from Eq. (46) that only M,, includes nonzero sta-
tionary value (M, = sin(x/2)), since RF pulse rotates the magnetiza-
tion around the x axis, keeping the x component unchanged, while
theyandzonesarerotated.Itis clearthatto performone complete turn
of the magnetization around the x axis, 27/« pulses are required, i.e.,
the period of oscillationis 27t/ocas in Eq. (46) (for aqualitative explana-
tion we do not consider dephasing of different isochromats). Fig. 2
demonstrates the oscillatory behaviour of echoes for T; = T>.

Eq. (46) corresponds to the known fact [5], that in absence of
spin relaxation the steady state of echoes in the CPMG sequence
(Myo = Mg, and My = 0) is sin(«/2). However, this result was not
obtained analytically in Ref. [5] for any «, but followed from
numerical solution for the CPMG pulse train. On the contrary, Eq.
(46) was derived analytically, using the GF approach.

6.4. Refocusing angle o # 0, /2, 7, unequal spin relaxation times
I<T;

A more complicated situation takes place for any refocusing an-
gle o # 0, /2, m. For example, it can be shown that for short (but
still finite) T, the decay of echo-amplitudes occurs with T; spin
relaxation time instead of T,.

Indeed, let us consider one period (from echo to echo) of the
CPMG sequence of resonant RF pulses with arbitrary refocusing an-
gle o # 0, /2, m. We shall also assume that T, is short enough for

(a) 4] :

124

0 4 8 12 16 20 24 28 32
n (echo number)

Fig. 3. Exact (open squares), asymptotic (dashed line) and analytically approxi-
mated (solid line) echoes (the x component); = 0.80, refocusing angle o is 27/9,
T1 =00 (&1 =1). (a) M, normalized to the maximum exact echo (Mp,., Nmax = 4) is
shown; (b) value (& &) ™2M, normalized to the exact value (&;&) ™M, is
plotted to see better the last echoes.

the transverse magnetization to have died out by the time of the
next RF pulse. Then, the next echo-signal will be determined by
the longitudinal magnetization turned partially into the xy plane
by the pulse, and the behavior of echoes will be governed by the
evolution of the z-magnetization. The evolution of the longitudinal
component for one period can be described by the factor exp(—TE/
T1)cos o (T;-relaxation and rotation by the RF pulse), and hence, it
is likely that the asymptotic behavior will be My, x [exp(—TE/
T;)cosa]", i.e., in spite of very short T, echo-signal decay can last
surprisingly long. This does take place in practice [18,19].

The asymptotic form of echo-amplitudes in the case under con-
sideration is derived in Appendix B and has the form:

Min B"
~A /2 47
Mo MayEt (47)
My, B" ~32
~— , 48
MyO 4A1\/ﬁn / ( )
where
(B+&)(B— ¢ cosa)
A= , 49
1 \/(B—éz)(B—%(él — &) cos ) 49
and
o &H-& (& - 52)2 2 .. CoSs &
B= 5 Ccos o +¢ 2 cos® o+ &1&, lcos o]’ (50)

From Eqs. (47) and (48) it follows that the asymptotic echo-ampli-
tude decay is not pure exponential, but is determined by the factor
B" and power dependence on n. In particular, if T, < T; (& < &)
and /&, /&|coso| > 2, one obtains B~ exp(—TE/T;)cosa, and the
asymptotic behavior corresponds to that discussed above for the
case of sufficiently short but finite T,. Fig. 3 demonstrates a good
agreement of exact and asymptotic echoes.

7. Analytical approximation for echoes

In the previous section the asymptotic forms for echo-ampli-
tudes for different cases were considered. However, comparison
with the exact results (see the next section) shows that the asymp-
totic regime can start from very large echo number. In experiment
the signal to noise ratio for such echoes with large numbers can be
too low. If the analytical formula for echo is required, one can use
the exact expression (34). However, it is rather inconvenient, so an
acute problem is to find an appropriate approximation that de-
scribes adequately the behavior of transient echoes. Below we give
such an analytical approximation for echo amplitudes. Derivation
of this approximation falls into two cases, whether the parameter
x from Eq. (36) is greater or less than some critical value yo:

%o = (1 —sina)/| cosa. (51)

These derivations are given in Appendices C and D.

The division between the two cases was made to estimate more
accurately the corresponding integrals (see Appendices C and D),
while there is no division for the exact echoes (Eq. (34)). This divi-
sion can be explained as follows. If T; # T,, the relaxation not only
reduces the absolute value of the magnetization, but also changes
its slope to the transverse plane, i.e., the magnetization, being
turned to the xy plane by the pulse, is returned toward the z axis
by the relaxation (compared with what was mentioned in Sec-
tion 6.3). Thus, the relaxation gives rise to the change of the num-
ber of pulses necessary for one complete turn of the magnetization
vector around the x axis. Moreover, it can occur that the relaxation
does not allow the magnetization make a complete turn around
the x axis at all, i.e., at some relation between Ty, T,, TE and o the
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oscillation behavior of echoes disappears. For a certain isochromat,
this corresponds to the situation when all of the eigenvalues of the
Carr-Purcell matrix (the spin evolution matrix in the recursion (9)
of Ref. [13]) are real, while in the opposite case there are one real
and two complex eigenvalues [9]. When averaging over different
isochromats, the transition from the "oscillatory” case to the
“non-oscillatory” one is described by the critical value yo. From
the mathematical point of view, this threshold arises from different
arrangement of the singular points of the GF (18) in the complex
plane (Figs. 4 and 5).

Strictly speaking, the theoretical limit for the transverse spin
relaxation time is T, < 2T; though the condition T, > T; is quite rare

4 Im ()
9
D
6 "
- ™ T -
1 7 Ly 15 Re ©
2 )mf2 «14
 § | wl2
A
8
3. «13
-%/2 /2 >7r/2 —xf2
4 e L — 5 ——
5 7 10 12

Fig. 4. Integration path in the case coso >0 and y < < 1. The contour by-passes
branch points (the phase changes for the x component are shown near the
corresponding branch points).

“Im ®
9 T
8
- -7f2 -w/2 -
1 . 13 Re (0)
-2 -mi2
2 - 75/2 ’12
w/2
6
e « 11
/2 /2 >wf2 ~7/2
4 o> - - -

Fig. 5. Integration path in the case cosa > 0 and y < o < 1. The contour by-passes
branch points (the phase changes for the x component are shown near the
corresponding branch points).

in practice [20]. Therefore, in this section we also consider the ana-
lytical approximation for T, > T;, the derivations are similar to
those for T, < T; described in Appendices C and D. The general con-
dition for the division between the “oscillatory” and “non-oscilla-
tory” cases for any T; and T, can be specified as follows. For

[Iny| < Iny,! (52)

the analytical approximation includes the oscillations, while in the
opposite case

[Iny| > Iny,' (53)

the oscillations are lacking. Subdivision between the two subcases
T, < T, and T, > T; is cased by the fact, that in the latter subcase
the relaxation “presses” the magnetization vector to the xy plane,
while in the former subcase - to the z axis.

Numbers of the equations for the exact, asymptotic and analyt-
ically approximated echoes, that are presented in this and previous
sections, are summarized in Table 1.

7.1. Case 1: |Iny| <Iny;!, T> < T;

If [Iny| <Inys! (20,7 and T, < Ty, the analytical approxi-
mation is (see Appendix C):

M 1/2 np, NP1 ,-npy /2

e (2] 1 - on[ e

(=&1&)" 120, TP, NP1\ ,—npy /2

oty I [52] + e D[R] e

(616)"

3532 N

Here Io[t] and I4[t] are the modified Bessel functions of the 1st kind,
and

cos (nf - g) (54)

(& —B)(B+ & cos )

e ’ 55
2 \/(f1+3)(3—%(61 — &) cos0) (55)
1/4

(616 46 + &) cosa)
As = —— 7 56
V2(&1&)" sing
H+& )
= arccos [ === cosa |, -
! Qﬁﬁ; (57)
p is the same as in Eq. (C.10) and can be rewritten as:
FE 41 £ \2
p = arctan 616 +3(& + &) cosa 58
Lo - Glas 4@ + &) osta
and
B
Dy = % -1, 59
2
&
BE 60
D B 60
3 1 cosa
‘T4 acosa) (61)

The corresponding expression for the y component is:

s =t {20 - on 3] n[ e

S e ) e
+(/f;\/)w_ {(1 ’;>exp[<nﬁ+ )]}

(62)
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Table 1
Numbers of the expressions for the exact, asymptotic and analytically approximated echoes (if necessary, in parenthesis the magnetization component is indicated).
Case Exact expression (apart from Egs. (28), (29), and Asymptotic Condition for the asymptotic form Analytical
(34)) form validity approximation
L<Thi(x<1)
[Iny|<Inyg!,a0,m, 54 (X), 62 (Y)
including
Ti=T, 30 46
T,<Ty, 0= 72 41 43 (X), 44 (Y) 65, 68
T,<Ty, o # 72 47 (X), 48 (Y) 65
[Iny| > Inyg!, a+#m/2, 69 (X), 74 (Y)
including
=0 No echo
=T 38
a#0,7 47 (X), 48 (Y) 75

L>Ti (x> 1)
[Iny| <Inyy!, a#0,m,
including
u=n/2 41
[Iny| > Inyy!, a#m/2

85 (X), 87 (V) 86 (X), 88 (V) 78 (X), 79 (Y)

85 (X), 87 (V) 94 (X), 95 (V) 89 (X), 90 (V)

where
K={(x" = y)cosasinpl(y " +y)cos 2]
+2i[(;{’1 +7) (cos2 B — 2sin* %) cos f — 2] }

-1

x {8([‘ + ) sin” asin ﬁ] . (63)

The first terms in Egs. (54) and (62) describe the decay with the fac-
tor B, the second ones - with the factor &,&,/B, while the third ones
describe damped oscillations with a period 27/g. One can see that
the period of oscillations in the third terms differs from that for
the case T =Ty, i.e.,, 27/, and depends also on relation between
T:- and T,-relaxation, according to what was mentioned above.

For sufficiently short spin-spin relaxation time T, < T;,TE one
has &1&[B = &fcosa < E1é; < B~ &cosa, so the echo decay oc-
curs with the factor &;cosa, as was discussed above (see
Section 6.4).

If T, # T, and o # 7/2, the first terms in both expressions (54)
and (62) dominate at n — oo, so using the expansion:

A2
I]t] ~ <1+1 4y +> t>1, (64)

e
V2nt 8t

one obtains the corresponding asymptotic expressions (47) and (48). The
corresponding condition for the asymptotic form validity is as follows:

E(@,
2\&

while the early echoes with the number n < 2(—1 + |B|/&,)~! behave
like a sum of one or two exponents and damped oscillations:

) >1, (65)

Mo g B 1o a0 (CG8)" 1, (G8)"
Mo =M 2P acg” P2 T MopnE
X COS <nﬁ p) (66)
Myn _ 3/2 71 (=&&4)" 3p
v~ gl (e 5) G
(&&)"?
TR {(1——)exp[(nﬁ+ )]} (67)

At T; = T, the approximation (54) and the asymptotic form for
the x component (Eq. (46)) coincide. Finally, the asymptotic forms
(43) and (44) for the special case o = /2 (and, hence, = 7/2) can
be obtained from the approximation for both coso > 0 and coso < 0
tending o to /2 — 0 or /2 + 0, respectively. From here, the condi-
tion for the asymptotic limit validity for 7/2 refocusing angle is:

ni /&
z<\/%— >>>1- (68)

Thus, one can see that the asymptotic form in the case of simulta-
neous T; = T, and o = /2 should be considered as tending T; to T,
(i.e., x — 1) first and o — 7/2 after that, otherwise one obtains the
diverging expression (see the discussion in Section 6.2).

72.Case 2: |Iny| = Inyy!, T, < Ty

If [Iny| = Inyy! («# m/2) and T, <
mation is (see Appendix D):

Mo B {012 12 e

Ty, the analytical approxi-

2
(=&&)" 1/2 np, P31\ oy /2
B e[ e
C_p np npa -
gty (e D[ -G Jemr @)
where
(C+&)3E (& +&)cosa—C)
A = 70
* \/ (C—&)(&cosa—C) 7 (70)
CB
=55 b 71
P 162 (71)
C
Pl (72)
52
_ [t CJ@rs)? oL cosa
C—( ) | cos a| \/ 2 cos2 o — &6 Tcoso] (73)

The corresponding expression for the y component is as follows:
My, B 3/2 nps nps31 -
~ I -1 e"p3/2
U R

MyO 4A 2
- %pi‘%{m ]y 2] e
4eA aea P o {mzu] +Qe-1h [ng“}} e a2,
(74)

According to the approximations, the echo behavior is described
by three terms, which give B-, ¢;&,/B- and C-decay factors, respec-
tively. If T, < T;,TE, one has &&,/B~ C= &fcosa < B~ &,cosa,
and echo amplitude decay occurs with the factor &;cos «, as was dis-
cussed above (see Section 6.4).
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For n — oo, o # 0,m/2,m (and, hence, T, # T, according to the
condition |Iny| > Iny,') the first terms in both expressions
(69) and (74) dominate. As in the previous subsection, using the
expansion (64), the corresponding asymptotic forms (47) and
(48) can be obtained. Thus, the appropriate condition when the
asymptotic forms (47) and (48) fit well with the echo amplitudes
occurs for:

BC
=1 1 75
(6152 >>> , (75)

while, again, the early echoes (i.e., n < 2(—1+ BC/&1&5) 7!
like a sum of from one to three exponents:

) behave

Mn B" 1 (=&18)" 1 1, " 5p
MxONA] 419 +A2Wp2 - 6—5 Aq 217 ) (76)
Myn~ B" 3/2 ! (=&18)" 32 1/2
Mo~ 4A P € ; 248" P 46A den, P 77)

At o« =0 and 7 the expressions (69) and (74) yield the exact re-
sults (see Eq. (38) and the discussion before it).

7.3. Case 3: |Iny| <Iny;!, T> > T;

If [Iny| <Inyg! (¢ 0,7) and T, > Ty, the analytical approxi-
mation is:

_gn
My, ~A ép;/zlo [%} o5 /2

M, 2
~ (=&)" 3/2 Nps NP6\ ,—nps/2
A [P -1 e e
(&e)"? -
~ A 08 ("ﬁ - T) (78)
and
%N_ & /2y [MPs] ,—nps/2
MyON 4Anp51[2] 5
(=&)" 1 npg NP6\ ,—nps /2
+ 4A, Ps { [2}4-11[ ]}e ’
(&8)"? K ; n-
oY Re{(l 75) exp [z(n/ﬂT)]}. (79)
Here
A = g*g 2 tan? (80)
27 61
A, — 2t —cotZ“, 81)
H-&
B
-1, 82
Ds 2 (82)
¢
Ps=§2* , (83)
B—|" "% cose s (51_62)2c052a+“ q 84
= = &i&, (84)

As, p and « are the same as in Egs. (56), (58) and (63), respectively.

One can see that in this case the echo decay is governed mainly
by T,-relaxation, and only the phase is changed in the oscillation
term. At T, = T; the two analytical approximations given here and
in Section 7.1 coincide. For T, > T; the asymptotic echo behavior
is as follows:

My ‘;2 n-1

—NA 2 85
xO 12\/—‘ ( )

for

n(B

i<5_1> > 1, (86)

and

MY”N( 62) n—l/Z (87)

My 2A,v7

for

n (&

3 <§— ) > 1. (88)

This asymptotic form is also valid at o = 7/2, i.e., there is no more
subdivision between odd and even echoes for T, > T;. This caused
by the fact that contrary to the discussion in Section 6.2 for
T, < Ty, here one should neglect T;-relaxation of the z component
and consider only the x one, which is not rotated by the pulse
and relaxes with T, during the whole pulse sequence (for a qualita-
tive explanation we do not consider dephasing of different
isochromats).
74. Case 4: |Iny| = Inyy!, T > Ty
If | In y|
tion is:

My ~ A & p;/z{ [np7] (26— [%] }e—npy/Z

> Inyg! (a#m/2) and T, > Ty, the analytical approxima-

Mo 2
4, i )i H e - 11o[25] — 1, [TBe] oo
AR ] [ o
and
My, o 5721

e e 0[] - [

(4:2) pé/z{ [nps] +e—1 [ngs] }e—nps/z

2
" ap nps NP3\ ,-nps /2
4Ap3{{2]”[2]}ep ' 0)
Here
5 cosa [(&+C0)(F(6 +&)cosa—C) (91)
* " Jcoso (&2 = O)(&eosa—C) 7
p=20-0%2 - 92)
B " <1
& IC|
=(2e-1 2(1— - 1. 93
Ps=(2e-1)g+201-0); ®3)

As in previous case, the echo decay is governed mainly by T,-
relaxation. The corresponding asymptotic form coincides with that
given by Egs. (85) and (87), but the conditions for asymptotic limit
validity are different:

E{2(1 —6)5—2 +(2€ —1)‘C‘ 1} >1  for My, (94)
2 |B| &
n & €
E[(26—1)‘B|+2(1 _E)E_ } >1 for Myn. (95)

At =0 and 7 this approximation also yields the exact results
(Section 6.1).
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8. Analysis of asymptotic form and approximation accuracy

To test the asymptotic forms and analytical approximations ob-
tained, we have made up a table showing an echo number, from
which the corresponding expression describes adequately the ex-
act echoes (Tables 2 and 3). As a criterion, the following condition
was chosen:

Tn 1‘ <0.05 (96)

(the superscripts “ap” and “ex” denote the approximated (by the
asymptotic form or analytical approximation) echo amplitude
and the exact one, respectively). Besides, since the situation
T, > T, is quite exotic, the analysis was performed for T, < T,
(x <1) only.

In Tables 2 and 3 the data format nq/ny(ns)/ny was chosen,
that means the following. The numbers n; and n, are the echo
numbers, from which the criterion (96) is fulfilled for the
asymptotic form and the approximation, respectively; these
numbers are shown if only they less than or equal 100. The
number ns in parenthesis is the actual echo number from which
the analytical approximation can be used with the criterion (96)
fulfilled, n3 is shown if only ns3 < ny, ny. The appearance of ns is
caused by the exclusion of some outlying values of § for very
small echoes (M,/Mpmax < 0.01), since the analytical approxima-
tion also yields very small values of the same order, but its accu-
racy is not sufficient for the criterion (96) to be fulfilled. For
comparison, the number ny is presented, which is the echo num-
ber, from which the exact echo damps by 100 times compared
with the maximum one; n4 is shown if only it is less than or
equal 100. The boundary between the oscillatory (to the right
of the boundary) and non-oscillatory (to the left of the bound-
ary) cases of the analytical approximation is in bold type. Refo-
cusing angles o« =0 and 7 are not presented, since in these cases
the exact solutions are possible, and the analytical approxima-
tion also reproduces the exact results.

One can see that, as |cosu| increases, the asymptotic regime
starts later (number n,). It can readily be verified (Eq. (34)) that
echo amplitudes can be represented as:

Ma(&1,&,%) = (&) Ma(1, %) = & 1" Ma(7, ). (97)
Thus, for example, for low o and j the asymptotic form starts work-

ing well too late, when the echo signal level can be rather low. At

Table 2

The accuracy of the asymptotic forms and analytical approximations for different values y

asymptotic form and analytical approximation coincide).

fixed o, with decreasing y the asymptotic form first begins working
earlier, and then with further decrease in j - later. The best point
for the asymptotic form lies near the boundary between the
oscillatory and non-oscillatory cases. This corresponds to the
conditions for the validity of the asymptotic forms (Eqs. (65) and
(75)): if x0< x <1, the asymptotic threshold ng=2(by ! —1)!
(b is defined in Eq. (C.12)) decreases with decreasing y,
while for y < o<1 the corresponding asymptotic threshold
Ngs = 2(bc — 1)~ (c is defined in Eq. (D.5)) increases with decreasing
X-

As for analytical approximation, it starts working much ear-
lier (numbers n, and ns3 in Tables 2 and 3) than the asymptotic
form (number n; in the tables). The approximation for My, is
worse than that for My, This is caused by the features of the
integrals to be estimated. Near the point y = yo the analytical
approximation becomes worse, but still good enough. In this re-
gion the estimation of the corresponding integrals (see Appendi-
ces C and D) can be carried out similarly, but this special case is
not treated in the present work not to complicate the
consideration.

The error of the approximate equations are also caused by the
following fact. When the corresponding integrals were estimated
(see Appendices C and D), only closeness of two out of all singu-
lar points of the GF was taken into account (points 8 and 9, 13
and 14 in Fig. 4; and points 6 and 7, 8 and 9, 11 and 12 in
Fig. 5). However, for instance, near the boundary between oscil-
latory and non-oscillatory cases, points 6 and 11 in Fig. 4 and 7
and 8 in Fig. 5 come close, and this should be also taken into ac-
count for higher accuracy, while we neglected this effect. Also, in
the region of simultaneous tending y -1 (T, —>T;) and
|cosa| — 1 the closeness of more singular points should be con-
sidered, viz. points 6, 8, 9 and 11 in Fig. 4 and points 6, 7, 8
and 9 in Fig. 5. The next corrections to the estimation can be
calculated, but the form of the equations becomes more compli-
cated. We suppose, if one is interested in an accurate analytical
formula for the first echoes, the exact expression (34) can be
used. However, echoes can be easily calculated numerically
from the GF at once, for example, by numerical expansion it in
a Taylor series (Eq. (28)) or by Fourier transform of the GF
[12,13].

Figs. 1-3 demonstrate good agreement between approxi-
mated and exact echoes in the region, where it is sufficient to
take into account the correlation between two of the singular
points only.

= /& /& and « in terms of ny, ny, n3 and ny; the x component (at y = 1, i.e., Ty = Ty, the

o (°) b
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10 -]~ -1/~ -1/~ -1/~ -1/~ -1/~ -1/~ 72/1/- 14/27/- 16/16/-
20 -11/77 -11/79 -/1/84 -/1/92 78/1/- 48/1/- 25/12/- 7/12/- 22/9/- 8/8/-
30 -2/34 -/2/36 94/2/38 51/2/40 29/2/48 15/18/58 5/8/75 12/6/- 31/6/- 6/6/-
40 -2/20 -1221 44/2/32 23/2/24 11/13/28 4/5/34 9/4/44 16/5/63 34/5/- 5/5/-
50 -2/13 50/2/13 21/4/14 9/11/16 4/2/19 7/2/23 8/4/29 15/4/43 36/4/82 4/4/-
60 96/2/9 23/4/9 8/9/10 3/2/12 6/2/14 7/3/17 12/3/22 18/4/32 41/4/62 3/3/-
70 38/2/7 8/9/7 5/2/8 5/2/9 5/2/11 9/3/13 15/3/17 21/3/25 45/3/49 3/3/-
80 8/8/5 5/2/6 6/2/6 9/4/7 9/4/9 13/3/11 21/3/14 27/3/21 57/3/41 3/3/-
90 16/8(2)/3 20/4/5 20/4/5 20/6/7 20/6/7 24/3/9 28/3/18 36/3/18 64/3/35 1/1/-
100 9/9/5 6/4/5 10/4/5 12/6(5)/7 20/8(4)/5 28/12(4)7 42/18(3)/11 74/34(3)/17 -/90(2)/32 2/2/-
110 39/2/6 10/10/7 6/4/7 8/4/7 12/6/8 16/8(6)/9 24/12(2)/11 41/20(2)/15 96/50(2)/29 22/~
120 96/1/8 25/5/8 12/11/9 8/6/9 8/6/10 12/6(4)/11 18/8(2)/12 30/16(2)/16 72/38(2)/29 22/~
130 -2/11 51/1/11 23/6/11 14/12/11 10/8/12 10/6/13 16/8(2)/13 26/12(2)/17 58/31(2)/29 2/2/-
140 -12/14 -/1/14 46/1/15 26/8/15 17/15/15 14/10/17 14/8/17 24/12(2)/18 52/2/29 22/~
150 -/1/20 -/120 96/1/21 54/1/21 34/8/21 24/20/21 18/12/21 24/12(2)/19 50/28(2)/27 22/~
160 -/1/30 -11/31 -11/31 -/1/30 83/1/28 55/6(1)/26 38/23(7)/22 28/18(10)/17 50/30(2)/27 22/~
170 -/1/28 -11/25 -/1/19 -/1/11 -1y7 -1y7 -/1/9 91/18(1)/13 60/38(2)/25 22/~
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Table 3
The accuracy of the asymptotic forms and analytical approximations for different values y = /&, /&; and « in terms of ny, ny, n3 and ny4; the y component.
o (°) X
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10 -11- -11= -11/- -11- -1/ -1- -12/- -12/- 64/86/- -123 (6)/-
20 -/1/76 -/1/73 -/1/70 -/1/66 -/3/62 -/7/59 73/37/55 33/41/48 78/37(2)/47 -/3/-
30 -2/34 -/1/33 -/1/31 -/8/29 82/7/28 43/52/26 23/26/25 40/10/22 99/50(2)/31 56/3/-
40 -12/9 -12/19 -/8/18 64/6/17 32/38/16 18/17/15 22/11(3)/16 48/7(2)/16 -162(2)/32 -12/-
50 -/2/13 -/8/12 59/6/12 27/31/11 15/12/9 18/7(3)/11 32/6/12 60/2/19 -94(2)/33 99/2/-
60 -12/9 66/6/9 25/27/8 13/10/7 18/3/7 27/12(5)/10  50/8(5)/10 86/38(1)/16  -/-(1)/30 26/2/-
70 -/8/7 24/25/6  12/8(3)/5 19/5/6 29/5/8 49/27(1)/9 74/43(7)/11 -/83(1)/16 —/12(1)/31 71/1/-
80 24/25/5 28/2/4 31/4/6 44/16(4))6  70/34(3)/)8  -/65(3)/10 -/63(2)/12 -/40(1)/16 -/1/32 60/1/-
90 20/4(2)/3  20/4/5 20/4/5 20/3/7 20/3/7 20/3/9 24/2/11 29/1/16 45/1/28 5/1/-
100 27/26/5 16/5/5 29/16(2)/4  42/21(2)/6  64/34(3)/8  91/14(3)/9 -/14(3)/11 -32(5)/]17 -/86(7)/31 50/1/-
110 -17/6 30/28/6  19/14/6 22/13/5 32/13(6)/7  42/23(3)/9 67/33(3)/10 98/54(8)/15  —-/44(8)/30 44/3/-
120 8/2/8 70/23/8  34/32/8 24/19/7 25/15/6 31/15(7)/10  43/20(3)/11 72/38(7)17  -[86(3)/29 15/1/-
130 -12/11 -/6/10 67/26/10 41/37/10 31/24/9 30/18/8 37/18(11)/13  58/24(8)/14  -/60(8)/28 471/~
140 -2/14 -12/14 -/4/14 75/31/13 51/46/13 41/30/12 39/22/15 54/22(4)/17  -/48(9)/34 54/1/-
150 -/1/20 -/1/20 -/1/20 -/1/20 99/38/19 70/31/18 56/40/18 54/28/23 96/40(13)/34  18/1/-
160 -11/31 -/1/31 -/1/31 -/1/31 -/1/31 -/48/30 -/74/29 86/58/30 93/41(25)/35  89/8/-
170 -/1/30 -/1/33 -/1/38 -]1/44 -/1/50 -/1/55 -7/58 -/98/59 -/-/61 -/15/-

9. Conclusions

Employing the generating functions formalism [12,13], exact
explicit analytical expression for echoes in the Carr-Purcell-Mei-
boom-Gill sequence with arbitrary excitation and refocusing an-
gles and resonance offset of RF pulses was obtained. It was
shown, that the exact echo amplitudes can be expressed in terms
of Legendre polynomials.

Asymptotic form for echoes was derived in an elegant way and
analyzed in details. It was shown that the following cases for the
asymptotic regime can be distinguished. The first one is the case
of refocusing angle « =0 or 7, when the well-known exact solu-
tions exist (no echo at o =0 and the result (38) at o = 7). The sec-
ond one is the case o« =7/2 and T, # T,, when the echo behavior
is defined not only by T; or T,, but by the effective relaxation time
2T T,/(T; + T2); besides, a subdivision between even and odd ech-
oes is observed. The third case is o # 0, w and T; = T,, when damped
oscillations with a period 27t/o are to manifest themselves. And the
last case is o # 0, /2, m and T; # T», when, for example, at suffi-
ciently rapid spin-spin relaxation the echo amplitude decay is de-
fined by T; and refocusing angle «, rather than by T>.

However, for some parameter sets the asymptotic form starts to
adequately describe the echo behavior very late, when experimen-
tal signal level can be too low. To improve the description, we ob-
tained the analytical approximation that corresponds to the exact
echoes starting from sufficiently small echo number. This approx-
imation derived from the GF is convenient for numerical and ana-
lytical analysis, since it does not contain any multiple sums, but
only well-known analytical functions (the Oth- and 1st-order mod-
ified Bessel functions of the 1st kind). It was shown that, depending
on the relationship of parameters cos« and ¢&,/¢;, the echo behavior
can be described by three terms containing either three pseudo-
exponential decays or two pseudo-exponential decays and damped
oscillations. Numerical comparison shows good agreement be-
tween approximate and exact echoes.

Besides, it was shown that the generating function approach
can also be applied to the consideration of terminated pulse se-
quences, when after-pulses echoes are registered. The nonnull-
configurations of the generating function for a definite isochromat,
which are actually the generating functions for after-pulses echo
amplitudes, were determined.
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Appendix A. Derivation of Eq. (43)

Let us consider the CPMG pulse sequence with the refocusing
angle o =m/2. The corresponding GF for echo-amplitudes takes
the form (39). Let us introduce a new variable y = z\/&&,, so Eq.
(39) can be rewritten as

_ My (141 +y?)

FO = M a—ma—y

My, (1=y(1-y?)
iy IR eI A1)

where y is the same as in Eq. (36), x < 1 for T, < T;. We will consider
the x component only, as the y-one can be treated similarly. Then,
according to the complex function theory, My, (n > 1) can be calcu-
lated by the contour integral:

Ma 1 (6&)"
My 2 2mi

A+ +y*) d
(1= =y)y=t

(A2)

The zeros of the numerator and denominator of the radical in Eq.
(A2) are +y ', i, +1. Taking y = €, the contour of integration con-
tains four singular points, and the expression (A.2) can be rewritten
as:

Mo _ (615)"? Re /7Z {(1 + xe”)(1 +€2m)}”2e4n0d9
0

Mo 21 (1= ye)(1 —e2)

1/2

_ (&1&)"? Re{ein/4 /'n/2 [cose (1+ Xel:a)} e dp
Jo

27 sind (1 — yel’)

+e—in/4 \/7I |:
/2

In the second integral it was taken into account that, when passing
the point 0=m/2 (y=1i), the phase changed to e ™2, Making the
change of variable 0 =7 — x (0 — © — 0) in the second integral, one
obtains

cos 0 ( + 7610)} 1/2e—in() d@} (A3)

sing (1 — ye)
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P i 1/2
Mxn o (Ql gz)n/z Re{ein/4 /71/2 |:COS 9(1 + Xelo):| e—in()dg
0

My 2@ sin0(1 — yei?)

e ™2 [cos0(1 — zei®)]'?
—im/4—inm L ind
+e /O {7““ i +Xem)} e’ do . (A4)

When n — oo, the main contribution to the integrals is determined
by 6 — 0 (cotd — 1/0), i.e.,

147 £ cosnm
1-y 1+

%N C]f "2

MxO -
cos(nb — n/4
X —_— A5
/0 7o (A5)
Again, making the change 0 — n0 and using
* sinx * cosx T
—dx = ——dx= /= A6
b E® ) 2 (A6)

one obtains the result (43). The expression (43) diverges for ¢, — &,
so the generate case ¢; = ¢, should be considered separately, and
the condition n(y~! —1)/2>> 1 for the asymptotic form (43) can
be written.

Appendix B. Derivation of Eq. (47)

Consider now the case of refocusing angle o # 7/2,m and un-

equal spin relaxation times T;>T, (&;>¢). Introducing
y =z/& &, one can rewrite the GF (18) as:
MxO XW) MyO Y»)
F + l—
¥ Y( X)|
XW) =04y -y cosoc+y} (B.1)
(y)—(lfyx)[ Y1 = y)cosa—y?]
and
(&&)"? dy
My = E0m— ) (82)

We will consider the x component of the magnetization only, as the
y one can be considered in a similar way.

First we assume that 0 < o < /2 (cosa > 0), then, in addition to
singular points +1/y outside the unit circle, four more singular
points exist:

e 2+7cosoc+\/‘ll(x*l—s—}()zcoszd—l,
y2=[12+xcosocf\/%(;(*1+X)2COSZO€*1-,
y3:_WCosa+\/}I(X*l—)()zcoszowl, (B.3)
y4:7X427Xcosoc—\/}I(Xfl—x)zcoszowl.

The point y, < —1 lies outside, and the point 0 <y3 <1 - inside the
unit circle. The positions of y; and y, depend on
x=1(x 1+ cosa: if x< 1, then y; and y, lie on the unit circle
(ly1] = |y=2| = 1), otherwise, y; >1 and 0<y, < 1. It is easy to show
that |ys| < |y| for any x. Indeed, the statement is obvious for x < 1,
and for x > 1 the desired inequality can be represented in the fol-
lowing form:

VXA p— X —14p<x—Vx*—1, (B-4)

where p = sin%x. At p =0 (« = 0) the two sides of the inequality (B.4)
are equal, but this case corresponds to the absence of echo-signal

and is out of interest. For any p > 0 the derivative of the left-hand
side of the inequality (B.4) with respect to p is

1 1
2x2+p 2yx—1+p

<0, (B.5)

and thus, the left-hand side of Eq. (B.4) decreases with increasing p,
i.e., y3 <y,. Thus, assuming y = y3 e for any x, one obtains:

M _ / [a + 1y5e") W€’ =) vse” = y,)]
Mo o L(1—yse?)(yse’ —y4)ys(1 —e?)
£ \n/2 )
% (ééjézg €7m0 d@} (BG)

For n — oo the main contribution to the integral is determined by
0 — 0, and therefore,

Ma _ (815)"? [(nyg)(yg—yl)(ya—yz)]‘”
MxO 27y} 2(1=y3) (Y3 —Y4)Y3
™ cos (n0—%) B"
do=
X/o NG 2ymn

(B+&)(B—¢& cosa)
(B—&)(B—1/2(& —&)cosa)’ (B.7)

Considering the case /2 < o < 7 (cosa < 0) in a similar way, one ob-
tains Eq. (47).

Appendix C. Derivation of the analytical approximation (54)

If (1 — sina)/|cosa| < ¥ < 1 and 0 < o < 7, not all the roots (B.3)
are real, viz. y; and y, lie on the unity circle. We first assume that
cosa > 0, since the case cosa <0 can be considered in a similar
way. Taking y = e in Eq. (B.2), one obtains:

M; 1 n X(eit) Y(ei) 71,”
W:E[n (Mx0m+lMyo X(e) e M do. (C.1)

Let us change the integration path to that shown in Fig. 4. When by-
passing the branch points, the radical phase changes should be ta-
ken into account, as shown in the same figure (we will treat the x
component only, since the y one can be treated in a similar way).
Taking into account the direction of integration as well, it can read-
ily be verified that only the following integrals contribute to the
integral in Eq. (C.1):

LAl L0 €

(the indices denote the direction of integration, all integrals mean
principal values). Let us denote y;=¢” and f = arccos (}(y '+
%) cos o) and consider each of the integrals separately (in what follows
I[t] means the modified Bessel function of the 1st kind).

C.1. Integration from the point 9 to the point 8

Taking 6= —ilnys —it, the integral f98 can be rewritten as
follows:

zn/Z
/ f —in0 d 0=

In(zy3) + xyset)(yse' —y1)(Vse = ¥o)  ue
e "tdt. Cc3
/ \/ 1 - yyset)ys(et — 1)(yset —y,) 3
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For n > 1 the integral (C.3) can be estimated as
/ \[ gy o 1[0 Y0 YD) s —Y))
V33 —Ya)

—yay -1 e—nt d A
X t=
A 2yt —1-0"? y3

(X' +y3) (Y3 —ys —2cos B), 7+YA XtV
\/ 11y} "[ 2y }exp [" 2y ] 4

C.2. Integration from the point 14 to the point 13

Taking 0 = m — iln(—y,4) — it =  + ilnys — it, the integral ffj can

be rewritten as follows:

/13 \/‘ —m()dg _ 716 —im/2
/m W (=1 - }Q’4ef (V4€" — Y1) (V4€* _yZ)e’”rdt. (C.5)
1 — JY4e)y4(e" — 1) (Y3 — y4e')
For n>> 1 the integral (C.5) can be estimated as

” —inf N_i ( yl)( yZ)
/\[ 40~ X' =Ya)¥s —Ya)

) il e R
></0 Te tdt
__TYs—X V4 —Y1)Ws — ¥2)

i 2x V(' —y)s —Ya)

(b e 7] s

C.3. Integration from the point 11 to the point 10 and from 6 to 5

Taking 0 = g — it, the integral flllo can be rewritten as follows:

~10
X )
Leildg = — je™

+ yelﬁe[ Yeib (et — 1)(eibet — i/x)rm
g \/ (@et —1)(ever —y, e —y,) ¢ o (7

For n>> 1 the integral (C.7) can be estimated as

10 X . X 00
Ve "do ~ —ie""ﬁ/ t12e " dt
1 y 0

(1+ yeib)eib(eif —e-i#) io b
X (yeit — 1) (el — y5) (e —y,) T
(1 + ye)sin
g \/(7ew—1)(51n[3—(x T_y)cosa)’ (C.8)

The integral f; can be estimated in a similar way. It can easily be
verified that

10 5 10
[ = |
1 6 11

(i o8 )" R

- sin “\ 2w
X COS (nﬁ p> (C.9)
where
1(y—1 2
p = arctan +3( T+ ) cosa (€10)

Lt = 2y/1- 500 + 1) cost o

Thus, the final expression for the analytical approximation of
the x component of echo amplitudes for cosa > 0 is as follows:

%(V ) _b" |(b+ )1 —2bcos p+b*)
Mg """ T2 2(b* +1)
b—y b—y 1)
xlo[n 7 ]exp {—n 2X]+ 2"
(14 2bcos g+ b*)by
(1 + xb)(b* + 1)
1—yb 1—yb 1—yb 1-—yb
“b {I(’[" 27b ]“1 [" 27b ]}eXp [7" be]
1/4
(1——(}’ +)* cos? o ) o
2V2nn3 sin% cos (nﬁ - E)’
(C.11)
where
1, 1 2
b:§|(x —y)cosal + Z(}( T— ) cos?a+1. (C.12)

Combining Eq. (C.11) with the case cosa < 0 considered in a similar
way, one obtains Eq. (54).

Appendix D. Derivation of the analytic approximation (69)

For y < (1 —sina)/|cosa| <1, 0 < a < 7w, o # 72 all roots (B.3)
are real. We first assume that coso >0, since the case coso <0
can be treated in a similar way. Taking y = ¢* in Eq. (B.2), one ob-
tains Eq. (C.1). Let us change the integration path to that shown
in Fig. 5. When by-passing the branch points, the radical phase
changes should be taken into account, as shown in the same figure
(we will treat the x component only, since the y one can be treated
in a similar way). Taking into account the direction of integration
as well, it can readily be verified that only the following integrals
contribute to the integral in Eq. (C.1):

T 6 g 11
IR
-7 7 9 12/

(the indices denote the direction of integration, all integrals mean
principal values, primes in the integrals indicate that the corre-
sponding integration contour is that shown in Fig. 5, not in Fig. 4).
The integral fllzl, is the same as in Eq. (C.5), and the estimation is
the same, too (Eq. (C.6)). Let us consider each of the remaining inte-
grals separately.
Taking 0 = —ilny; —

11[/2
/ \/7 —in0 do =
7

ln(/y) _ —
. / 1 wumef)yl(ef D€ =) g,

(D.1)

it, the integral ff,’ can be rewritten as:

(1= yre) (vt —y3) (18t —ya)
Yax -1 1/2 p—nt
7 +¥1)( 2 t/<e _ dt
—Ya) y1 oy —1-0)"?
777'5(}’2%7 -1 J(x 1+y1>0'1 )
2yt 01 = Y)Y —Y3)
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Taking 0 = —ilnys — it, the integral fgg, can be estimated in a similar
way:
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/8, X(eio)e—inll do = — iein/Z
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o “\/(x Y50 —Y5e) W2~ ¥5€) ey
0

(1T = yse)ys(ef —1)(yzef —yy)

I (yyy 10"
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Thus, the final expression for the analytical approximation for the x

component of echo amplitudes for y < (1 —sina)/|cosa| <1 and
cosa >0 is as follows:

—Yo¥s — 1
+1 {niz

My . . onpa _b"(bc=1) [ (b+)(b—0) n(bc—1)
Mo &) ¥ g b b +1)c {IO[ 2 ]
i [n(bcz— 1)} } exp [—n bc2— 1]
c"c—y [(c+ )1 —-c2)b c—y
"4 Vb-otbor” {"’[”27]
c—X c—X
| fee |G
n (=1)" 1 —yb [(b+c)(1+bc)yb
4b" b\ (1 + yb)(1 +b)c
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O R R S I R T S LT
where
c= % (" +x)|cos ol — \/}1(}(*1 + ) cos? o —1 (D.5)

and b is the same as in (C.12). Combining Eq. (D.4) with the case
coso. < 0 considered in a similar way, one obtains Eq. (69).
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